skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal Matching using Random Hyperplane Tessellations
Matching is one of the simplest approaches for estimating causal effects from observational data. Matching techniques compare the observed outcomes across pairs of individuals with similar covariate values but different treatment statuses in order to estimate causal effects. However, traditional matching techniques are unreliable given high-dimensional covariates due to the infamous curse of dimensionality. To overcome this challenge, we propose a simple, fast, yet highly effective approach to matching using Random Hyperplane Tessellations (RHPT). First, we prove that the RHPT representation is an approximate balancing score – thus maintaining the strong ignorability assumption – and provide empirical evidence for this claim. Second, we report results of extensive experiments showing that matching using RHPT outperforms traditional matching techniques and is competitive with state-of-the-art deep learning methods for causal effect estimation. In addition, RHPT avoids the need for computationally expensive training of deep neural networks.  more » « less
Award ID(s):
2226025 2041759
PAR ID:
10549074
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Journal Name:
Proceedings of Machine Learning Research: Proceedings of the Third Conference on Causal Learning and Reasoning
Volume:
236
ISSN:
2640-3498
Page Range / eLocation ID:
688-702
Subject(s) / Keyword(s):
Causal inference hyperdimensional computing machine learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A classical problem in causal inference is that of matching, where treatment units need to be matched to control units based on covariate information. In this work, we propose a method that computes high quality almost-exact matches for high-dimensional categorical datasets. This method, called FLAME (Fast Large-scale Almost Matching Exactly), learns a distance metric for matching using a hold-out training data set. In order to perform matching efficiently for large datasets, FLAME leverages techniques that are natural for query processing in the area of database management, and two implementations of FLAME are provided: the first uses SQL queries and the second uses bit-vector techniques. The algorithm starts by constructing matches of the highest quality (exact matches on all covariates), and successively eliminates variables in order to match exactly on as many variables as possible, while still maintaining interpretable high-quality matches and balance between treatment and control groups. We leverage these high quality matches to estimate conditional average treatment effects (CATEs). Our experiments show that FLAME scales to huge datasets with millions of observations where existing state-of-the-art methods fail, and that it achieves significantly better performance than other matching methods. 
    more » « less
  2. Traditional communication systems transmit a codeword only after all message bits are available at the transmitter. This paper joins Guo & Kostina and Lalitha et al. in developing approaches for causal encoding, where the transmitter may begin transmitting codeword symbols as soon as the first message bit arrives. Building on the posterior matching encoders of Horstein, Shayevitz & Feder, and Naghshvar et al., this paper extends our computationally efficient systematic encoder to progressively encode using only the message bits that are causally available. Systematic codes work well with posterior matching on a channel with feedback, and they provide an immediate benefit when causal encoding is employed instead of traditional encoding. Our algorithm captures additional gains in the interesting region where the transmission rate μ is higher than the source rate λ at which message bits become available. In this region, we improve performance further through the transmission of additional, non- systematic symbols before a traditional encoder would have even begun transmission. 
    more » « less
  3. null (Ed.)
    With the increasing adoption of predictive models trained using machine learning across a wide range of high-stakes applications, e.g., health care, security, criminal justice, finance, and education, there is a growing need for effective techniques for explaining such models and their predictions. We aim to address this problem in settings where the predictive model is a black box; That is, we can only observe the response of the model to various inputs, but have no knowledge about the internal structure of the predictive model, its parameters, the objective function, and the algorithm used to optimize the model. We reduce the problem of interpreting a black box predictive model to that of estimating the causal effects of each of the model inputs on the model output, from observations of the model inputs and the corresponding outputs. We estimate the causal effects of model inputs on model output using variants of the Rubin Neyman potential outcomes framework for estimating causal effects from observational data. We show how the resulting causal attribution of responsibility for model output to the different model inputs can be used to interpret the predictive model and to explain its predictions. We present results of experiments that demonstrate the effectiveness of our approach to the interpretation of black box predictive models via causal attribution in the case of deep neural network models trained on one synthetic data set (where the input variables that impact the output variable are known by design) and two real-world data sets: Handwritten digit classification, and Parkinson's disease severity prediction. Because our approach does not require knowledge about the predictive model algorithm and is free of assumptions regarding the black box predictive model except that its input-output responses be observable, it can be applied, in principle, to any black box predictive model. 
    more » « less
  4. null (Ed.)
    Accurate selectivity estimation for string predicates is a long-standing research challenge in databases. Supporting pattern matching on strings (such as prefix, substring, and suffix) makes this problem much more challenging, thereby necessitating a dedicated study. Traditional approaches often build pruned summary data structures such as tries followed by selectivity estimation using statistical correlations. However, this produces insufficiently accurate cardinality estimates resulting in the selection of sub-optimal plans by the query optimizer. Recently proposed deep learning based approaches leverage techniques from natural language processing such as embeddings to encode the strings and use it to train a model. While this is an improvement over traditional approaches, there is a large scope for improvement. We propose Astrid, a framework for string selectivity estimation that synthesizes ideas from traditional and deep learning based approaches. We make two complementary contributions. First, we propose an embedding algorithm that is query-type (prefix, substring, and suffix) and selectivity aware. Consider three strings 'ab', 'abc' and 'abd' whose prefix frequencies are 1000, 800 and 100 respectively. Our approach would ensure that the embedding for 'ab' is closer to 'abc' than 'abd'. Second, we describe how neural language models could be used for selectivity estimation. While they work well for prefix queries, their performance for substring queries is sub-optimal. We modify the objective function of the neural language model so that it could be used for estimating selectivities of pattern matching queries. We also propose a novel and efficient algorithm for optimizing the new objective function. We conduct extensive experiments over benchmark datasets and show that our proposed approaches achieve state-of-the-art results. 
    more » « less
  5. General methods have been developed for estimating causal effects from observational data under causal assumptions encoded in the form of a causal graph. Most of this literature assumes that the underlying causal graph is completely specified. However, only observational data is available in most practical settings, which means that one can learn at most a Markov equivalence class (MEC) of the underlying causal graph. In this paper, we study the problem of causal estimation from a MEC represented by a partial ancestral graph (PAG), which is learnable from observational data. We develop a general estimator for any identifiable causal effects in a PAG. The result fills a gap for an end-to-end solution to causal inference from observational data to effects estimation. Specifically, we develop a complete identification algorithm that derives an influence function for any identifiable causal effects from PAGs. We then construct a double/debiased machine learning (DML) estimator that is robust to model misspecification and biases in nuisance function estimation, permitting the use of modern machine learning techniques. Simulation results corroborate with the theory. 
    more » « less