skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine learning for parameter auto-tuning in molecular dynamics simulations: Efficient dynamics of ions near polarizable nanoparticles
Simulating the dynamics of ions near polarizable nanoparticles (NPs) using coarse-grained models is extremely challenging due to the need to solve the Poisson equation at every simulation timestep. Recently, a molecular dynamics (MD) method based on a dynamical optimization framework bypassed this obstacle by representing the polarization charge density as virtual dynamic variables and evolving them in parallel with the physical dynamics of ions. We highlight the computational gains accessible with the integration of machine learning (ML) methods for parameter prediction in MD simulations by demonstrating how they were realized in MD simulations of ions near polarizable NPs. An artificial neural network–based regression model was integrated with MD simulation and predicted the optimal simulation timestep and optimization parameters characterizing the virtual system with 94.3% success. The ML-enabled auto-tuning of parameters generated accurate dynamics of ions for ≈ 10 million steps while improving the stability of the simulation by over an order of magnitude. The integration of ML-enhanced framework with hybrid Open Multi-Processing / Message Passing Interface (OpenMP/MPI) parallelization techniques reduced the computational time of simulating systems with thousands of ions and induced charges from thousands of hours to tens of hours, yielding a maximum speedup of ≈ 3 from ML-only acceleration and a maximum speedup of ≈ 600 from the combination of ML and parallel computing methods. Extraction of ionic structure in concentrated electrolytes near oil–water emulsions demonstrates the success of the method. The approach can be generalized to select optimal parameters in other MD applications and energy minimization problems.  more » « less
Award ID(s):
1720625
PAR ID:
10549252
Author(s) / Creator(s):
; ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
The International Journal of High Performance Computing Applications
Volume:
34
Issue:
3
ISSN:
1094-3420
Format(s):
Medium: X Size: p. 357-374
Size(s):
p. 357-374
Sponsoring Org:
National Science Foundation
More Like this
  1. The Discrete Element Method is widely employed for simulating granular flows, but conventional integration techniques may produce unphysical results for simulations with static friction when particle size ratios exceed R ≈ 3. These inaccuracies arise under certain circumstances because some variables in the velocity-Verlet algorithm are calculated at the half-timestep, while others are computed at the full timestep. To correct this, we develop an improved velocity-Verlet integration algorithm to ensure physically accurate outcomes up to the largest size ratios examined (R = 100). The implementation of this improved synchronized_verlet integration method within the LAMMPS framework is detailed, and its effectiveness is validated through a simple three-particle test case and a more general example of granular flow in mixtures with large size-ratios, for which we provide general guidelines for selecting simulation parameters and accurately modeling inelasticity in large particle size-ratio simulations. 
    more » « less
  2. Fluorescent light-up aptamers (FLAPs) are well-performed biosensors for cellular imaging and the detection of different targets of interest, including RNA, non-nucleic acid molecules, metal ions, and so on. They could be easily designed and emit a strong fluorescence signal once bound to specified fluorogens. Recently, one unique aptamer called Mango-II has been discovered to possess a strong affinity and excellent fluorescent properties with fluorogens TO1-Biotin and TO3-Biotin. To explore the binding mechanisms, computational simulations have been performed to obtain structural and thermodynamic information about FLAPs at atomic resolution. AMOEBA polarizable force field, with the capability of handling the highly charged and flexible RNA system, was utilized for the simulation of Mango-II with TO1-Biotin and TO3-Biotin in this work. The calculated binding free energy using published crystal structures is in excellent agreement with the experimental values. Given the challenges in modeling complex RNA dynamics, our work demonstrates that MD simulation with a polarizable force field is valuable for understanding aptamer-fluorogen binding and potentially designing new aptamers or fluorogens with better performance. 
    more » « less
  3. The molecular morphology and dynamics of conjugated polymers in the bulk solid state play a significant role in determining macroscopic charge transport properties. To understand this relationship, molecular dynamics (MD) simulations and quantum mechanical calculations are used to evaluate local electronic properties. In this work, we investigate the importance of system and simulation parameters, such as force fields and equilibration methods, when simulating amorphous poly(3-hexylthiophene) (P3HT), a model semiconducting polymer. An assessment of MD simulations for five different published P3HT force fields is made by comparing results to experimental wide-angle X-ray scattering (WAXS) and to a broad range of quasi-elastic neutron scattering (QENS) data. Moreover, an in silico analysis of force field parameters reveals that atomic partial charges and torsion potentials along the backbone and side chains have the greatest impact on structure and dynamics related to charge transport mechanisms in P3HT. 
    more » « less
  4. null (Ed.)
    • Water is the primary cellular solvent, yet is challenging to simulate computationally. Here we simulate water molecules in the Gramicidin A channel comparing Monte Carlo (MC) sampling with a continuum electrostatics and Molecular Dynamics (MD) calculations with the non-polarizable CHARMM36 and polarizable Drude force fields. • These give different water properties, with classical MD yielding well oriented water wires, while the Drude or continuum electrostatics force fields lead to more disordered water molecules, often changing orientation in the middle of the channel. 
    more » « less
  5. To tackle the time scales required to study complex chemical reactions, methods performing accelerated molecular dynamics are necessary even with the recent advancement in high-performance computing. A number of different acceleration techniques are available. Here we explore potential synergies between two popular acceleration methods – Parallel Replica Dynamics (PRD) and Collective Variable Hyperdynamics (CVHD), by analysing the speedup obtained for the pyrolysis of n-dodecane. We observe that PRD + CVHD provides additional speedup to CVHD by reaching the required time scales for the reaction at an earlier wall-clock time. Although some speedup is obtained with the additional replicas, we found that the effectiveness of the inclusion of PRD is depreciated for systems where there is a dramatic increase in reaction rates induced by CVHD. Similar observations were made in the simulation of ethylene-carbonate/Li system, which is inherently more reactive than pyrolysis, indicate that the speedup obtained via the combination of the two acceleration methods can be generalised to most practical chemical systems. 
    more » « less