Cation‐π interactions are noncovalent interactions between a π‐electron system and a positively charged ion that are regarded as a strong noncovalent interaction and are ubiquitous in biological systems. Similarly, though less studied, anion‐ring interactions are present in proteins along with in‐plane interactions of anions with aromatic rings. As these interactions are between a polarizing ion and a polarizable π system, the accuracy of the treatment of these interactions in molecular dynamics (MD) simulations using additive force fields (FFs) may be limited. In the present work, to allow for a better description of ion‐π interactions in proteins in the Drude‐2013 protein polarizable FF, we systematically optimized the parameters for these interactions targeting model compound quantum mechanical (QM) interaction energies with atom pair‐specific Lennard‐Jones parameters along with virtual particles as selected ring centroids introduced to target the QM interaction energies and geometries. Subsequently, MD simulations were performed on a series of protein structures where ion‐π pairs occur to evaluate the optimized parameters in the context of the Drude‐2013 FF. The resulting FF leads to a significant improvement in reproducing the ion‐π pair distances observed in experimental protein structures, as well as a smaller root‐mean‐square differences and fluctuations of the overall protein structures from experimental structures. Accordingly, the optimized Drude‐2013 protein polarizable FF is suggested for use in MD simulations of proteins where cation‐π and anion‐ring interactions are critical. © 2019 Wiley Periodicals, Inc.
- Award ID(s):
- 1855942
- PAR ID:
- 10225739
- Date Published:
- Journal Name:
- Journal of Computational Biophysics and Chemistry
- Volume:
- 20
- Issue:
- 02
- ISSN:
- 2737-4165
- Page Range / eLocation ID:
- 111 to 130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
RNA molecules are highly dynamic and capable of adopting a wide range of complex, folded structures. The factors driving the folding and dynamics of these structures are dependent on a balance of base pairing, hydration, base stacking, ion interactions, and the conformational sampling of the 2′‐hydroxyl group in the ribose sugar. The representation of these features is a challenge for empirical force fields used in molecular dynamics simulations. Toward meeting this challenge, the inclusion of explicit electronic polarization is important in accurately modeling RNA structure. In this work, we present a polarizable force field for RNA based on the classical Drude oscillator model, which represents electronic degrees of freedom via negatively charged particles attached to their parent atoms by harmonic springs. Beginning with parametrization against quantum mechanical base stacking interaction energy and conformational energy data, we have extended the Drude‐2017 nucleic acid force field to include RNA. The conformational sampling of a range of RNA sequences were used to validate the force field, including canonical A‐form RNA duplexes, stem‐loops, and complex tertiary folds that bind multiple Mg2+ions. Overall, the Drude‐2017 RNA force field reproduces important properties of these structures, including the conformational sampling of the 2′‐hydroxyl and key interactions with Mg2+ions. © 2018 Wiley Periodicals, Inc.
-
Potassium channels modulate various cellular functions through efficient and selective conduction of K + ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K + ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated by ab initio calculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations.more » « less
-
Fluorescent light-up aptamers (FLAPs) are well-performed biosensors for cellular imaging and the detection of different targets of interest, including RNA, non-nucleic acid molecules, metal ions, and so on. They could be easily designed and emit a strong fluorescence signal once bound to specified fluorogens. Recently, one unique aptamer called Mango-II has been discovered to possess a strong affinity and excellent fluorescent properties with fluorogens TO1-Biotin and TO3-Biotin. To explore the binding mechanisms, computational simulations have been performed to obtain structural and thermodynamic information about FLAPs at atomic resolution. AMOEBA polarizable force field, with the capability of handling the highly charged and flexible RNA system, was utilized for the simulation of Mango-II with TO1-Biotin and TO3-Biotin in this work. The calculated binding free energy using published crystal structures is in excellent agreement with the experimental values. Given the challenges in modeling complex RNA dynamics, our work demonstrates that MD simulation with a polarizable force field is valuable for understanding aptamer-fluorogen binding and potentially designing new aptamers or fluorogens with better performance.more » « less
-
Abstract The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13 C-detected water 1 H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1 H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.more » « less