skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical solutions to an inverse problem for a non-linear Helmholtz equation
In this work, we develop numerical methods to solve forward and inverse wave problems for a nonlinear Helmholtz equation defined in a spherical shell between two concentric spheres centred at the origin. A spectral method is developed to solve the forward problem while a combination of a finite difference approximation and the least squares method are derived for the inverse problem. Numerical examples are given to verify the method. ReferencesR. Askey. Orthogonal polynomials and special functions. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1975. doi: 10.1137/1.9781611970470G. Baruch, G. Fibich, and S. Tsynkov. High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension. Nonlinear Photonics. Optica Publishing Group, 2007. doi: 10.1364/np.2007.ntha6G. Fibich and S. Tsynkov. High-Order Two-Way Artificial Boundary Conditions for Nonlinear Wave Propagation with Backscattering. J. Comput. Phys. 171 (2001), pp. 632–677. doi: 10.1006/jcph.2001.6800G. Fibich and S. Tsynkov. Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions. J. Comput. Phys. 210 (2005), pp. 183–224. doi: 10.1016/j.jcp.2005.04.015P. M. Morse and K. U. Ingard. Theoretical Acoustics. International Series in Pure and Applied Physics. McGraw-Hill Book Company, 1968G. N. Watson. A treatise on the theory of Bessel functions. International Series in Pure and Applied Physics. Cambridge Mathematical Library, 1996. url: https://www.cambridge.org/au/universitypress/subjects/mathematics/real-and-complex-analysis/treatise-theory-bessel-functions-2nd-edition-1?format=PB&isbn=9780521483919   more » « less
Award ID(s):
2012355
PAR ID:
10549303
Author(s) / Creator(s):
;
Publisher / Repository:
Australian Mathematical Society
Date Published:
Journal Name:
ANZIAM Journal
Volume:
64
ISSN:
1445-8810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study a regularized version of the Landau equation, which was recently introduced in [J. A. Carrillo, J. Hu, L. Wang and J. Wu, A particle method for the homogeneous Landau equation, J. Comput. Phys. X 7 (2020) 100066, 24] to numerically approximate the Landau equation with good accuracy at reasonable computational cost. We develop the existence and uniqueness theory for weak solutions, and we reinforce the numerical findings in the above-mentioned paper by rigorously proving the validity of particle approximations to the regularized Landau equation. 
    more » « less
  2. null (Ed.)
    This paper is concerned with the inverse scattering problem which aims to determine the spatially distributed dielectric constant coefficient of the 2D Helmholtz equation from multifrequency backscatter data associated with a single direction of the incident plane wave. We propose a globally convergent convexification numerical algorithm to solve this nonlinear and ill-posed inverse problem. The key advantage of our method over conventional optimization approaches is that it does not require a good first guess about the solution. First, we eliminate the coefficient from the Helmholtz equation using a change of variables. Next, using a truncated expansion with respect to a special Fourier basis, we approximately reformulate the inverse problem as a system of quasilinear elliptic PDEs, which can be numerically solved by a weighted quasi-reversibility approach. The cost functional for the weighted quasi-reversibility method is constructed as a Tikhonov-like functional that involves a Carleman Weight Function. Our numerical study shows that, using a version of the gradient descent method, one can find the minimizer of this Tikhonov-like functional without any advanced a priori knowledge about it. 
    more » « less
  3. Abstract This work analyzes the forward and inverse scattering series for scalar waves based on the Helmholtz equation and the diffuse waves from the time-independent diffusion equation, which are important partial differential equations (PDEs) in various applications. Different from previous works, which study the radius of convergence for the forward and inverse scattering series, the stability, and the approximation error of the series under theLpnorms, we study these quantities under the SobolevHsnorm, which associates with a general class ofL2-based function spaces. TheHsnorm has a natural spectral bias based on its definition in the Fourier domain: the cases < 0 biases towards the lower frequencies, while the cases > 0 biases towards the higher frequencies. We compare the stability estimates using differentHsnorms for both the parameter and data domains and provide a theoretical justification for the frequency weighting techniques in practical inversion procedures. We also provide numerical inversion examples to demonstrate the differences in the inverse scattering radius of convergence under different metric spaces. 
    more » « less
  4. We studied the least-squares ReLU neural network (LSNN) method for solving a linear advection-reaction equation with discontinuous solution in [Z. Cai et al., J. Comput. Phys., 443 (2021), 110514]. The method is based on a least-squares formulation and uses a new class of approximating functions: ReLU neural network (NN) functions. A critical and additional component of the LSNN method, differing from other NN-based methods, is the introduction of a properly designed and physics preserved discrete differential operator. In this paper, we study the LSNN method for problems with discontinuity interfaces. First, we show that ReLU NN functions with depth \(\lceil \log\_2(d+1)\rceil+1\) can approximate any \(d\)-dimensional step function on a discontinuity interface generated by a vector field as streamlines with any prescribed accuracy. By decomposing the solution into continuous and discontinuous parts, we prove theoretically that the discretization error of the LSNN method using ReLU NN functions with depth \(\lceil \log\_2(d+1)\rceil+1\) is mainly determined by the continuous part of the solution provided that the solution jump is constant. Numerical results for both two- and three-dimensional test problems with various discontinuity interfaces show that the LSNN method with enough layers is accurate and does not exhibit the common Gibbs phenomena along discontinuity interfaces. 
    more » « less
  5. We investigate the effect of constant-vorticity background shear on the properties of wavetrains in deep water. Using the methodology of Fokas ( A Unified Approach to Boundary Value Problems , 2008, SIAM), we derive a higher-order nonlinear Schrödinger equation in the presence of shear and surface tension. We show that the presence of shear induces a strong coupling between the carrier wave and the mean-surface displacement. The effects of the background shear on the modulational instability of plane waves is also studied, where it is shown that shear can suppress instability, although not for all carrier wavelengths in the presence of surface tension. These results expand upon the findings of Thomas et al.  ( Phys. Fluids , vol. 24 (12), 2012, 127102). Using a modification of the generalized Lagrangian mean theory in Andrews & McIntyre ( J. Fluid Mech. , vol. 89, 1978, pp. 609–646) and approximate formulas for the velocity field in the fluid column, explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are obtained for plane-wave and Jacobi elliptic function solutions of the nonlinear Schrödinger equation. Numerical approximations to particle trajectories for these solutions are found and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions corroborate the theoretical results. We show that background currents have significant effects on the mean transport properties of waves. In particular, certain combinations of background shear and carrier wave frequency lead to the disappearance of mean-surface mass transport. These results provide a possible explanation for the measurements reported in Smith ( J. Phys. Oceanogr. , vol. 36, 2006, pp. 1381–1402). Our results also provide further evidence of the viability of the modification of the Stokes drift velocity beyond the standard monochromatic approximation, such as recently proposed in Breivik et al.  ( J. Phys. Oceanogr. , vol. 44, 2014, pp. 2433–2445) in order to obtain a closer match to a range of complex ocean wave spectra. 
    more » « less