skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: In-Situ Calibration of Six-Axis Force/Torque Transducers on a Six-Legged Robot
Ground contact modeling for multilegged locomotion is challenging due to the possibility of multiple slipping legs. To understand the interplay of contact forces among multiple legs, we integrated a robot with six high-precision 6 degree-of-freedom (DoF) force-torque sensors, and measured the wrenches (forces and torques) produced in practice. Here, we present an in situ calibration procedure for simultaneously measuring all foot contact wrenches of a hexapod using 6-DoF load cells installed at the hips. We characterized transducer offset, leg gravity offset, and the wrench transformation error in our calibration model. Our calibration reduced the root-mean-square-error (RSME) by 63% for forces and 90% for torques in the residuals of the robot standing in different poses, compared with naive constant offset removal.  more » « less
Award ID(s):
2038432
PAR ID:
10549312
Author(s) / Creator(s):
;
Publisher / Repository:
ASME Journal of Dynamic Systems, Measurement, and Control
Date Published:
Journal Name:
Journal of Dynamic Systems, Measurement, and Control
Volume:
147
Issue:
3
ISSN:
0022-0434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper introduces a novel cable-driven robotic platform that enables six degrees-of-freedom (DoF) natural head–neck movements. Poor postural control of the head–neck can be a debilitating symptom of neurological disorders such as amyotrophic lateral sclerosis and cerebral palsy. Current treatments using static neck collars are inadequate, and there is a need to develop new devices to empower movements and facilitate physical rehabilitation of the head–neck. State-of-the-art neck exoskeletons using lower DoF mechanisms with rigid linkages are limited by their hard motion constraints imposed on head–neck movements. By contrast, the cable-driven robot presented in this paper does not constrain motion and enables wide-range, 6-DoF control of the head–neck. We present the mechatronic design, validation, and control implementations of this robot, as well as a human experiment to demonstrate a potential use case of this versatile robot for rehabilitation. Participants were engaged in a target reaching task while the robot applied both assistive and resistive moments on the head during the task. Our results show that neck muscle activation increased by 19% when moving the head against resistance and decreased by 28–43% when assisted by the robot. Overall, these results provide a scientific justification for further research in enabling movement and identifying personalized rehabilitation for motor training. Beyond rehabilitation, other applications such as applying force perturbations on the head to study sensory integration and applying traction to achieve pain relief may benefit from the innovation of this robotic platform which is capable of applying controlled 6-DoF forces/moments on the head. 
    more » « less
  2. Humanoid robots dynamically navigate an environment by interacting with it via contact wrenches exerted at intermittent contact poses. Therefore, it is important to consider dynamics when planning a contact sequence. Traditional contact planning approaches assume a quasi-static balance criterion to reduce the computational challenges of selecting a contact sequence over a rough terrain. This however limits the applicability of the approach when dynamic motions are required, such as when walking down a steep slope or crossing a wide gap. Recent methods overcome this limitation with the help of efficient mixed integer convex programming solvers capable of synthesizing dynamic contact sequences. Nevertheless, its exponential-time complexity limits its applicability to short time horizon contact sequences within small environments. In this paper, we go beyond current approaches by learning a prediction of the dynamic evolution of the robot centroidal momenta, which can then be used for quickly generating dynamically robust contact sequences for robots with arms and legs using a search-based contact planner. We demonstrate the efficiency and quality of the results of the proposed approach in a set of dynamically challenging scenarios. 
    more » « less
  3. In this research effort, we formulate a prescribed-time safety filter (PTSf) for the case of a redundant manipulator performing a fixed-duration task. This formulation, which is based on a quadratic programming approach, yields a filter that is capable of avoiding multiple obstacles in a minimally invasive manner with bounded joint torques, while simultaneously allowing the nominal controller to converge to positions located on the boundary of the safe set by the end of the fixed-duration task. To demonstrate the efficacy of the proposed method, we performed a series of simulations and experiments on Baxter, a seven-DOF collaborative robot manipulator. In these simulations and experiments, Baxter must follow a 6-s parabolic trajectory as closely as possible while navigating around a large spherical obstacle blocking its path and place an object precisely on the surface of a table without overshoot by the end of the 6s. The results of our simulations and experiments demonstrated the ability of the PTSf to enforce safety throughout the 6-s task, while allowing the robot manipulator to make contact with the table and thus achieve the desired goal position by the end of the task. Furthermore, when compared with the exponential safety filter (ESf), which is the state-of-the-art in current literature, our proposed method yielded consistently lower joint jerks. Thus, for tasks with a fixed duration, the proposed PTSf offers performance benefits over the exponential filters currently present in literature. 
    more » « less
  4. The Angular-Momentum Linear Inverted Pendulum (ALIP) model is a promising motion planner for bipedal robots. However, it relies on two assumptions: (1) the robot has point-contact feet or passive ankles, and (2) the angular momentum around the center of mass, known as centroidal angular momentum, is negligible. This paper addresses the question of whether the ALIP paradigm can be applied to more general bipedal systems with complex foot geometry (e.g., flat feet) and nontrivial torso/limb inertia and mass distribution (e.g., non-centralized arms). In such systems, the dynamics introduce non-negligible centroidal momentum and contact wrenches at the feet, rendering the assumptions of the ALIP model invalid. This paper presents the ALIP planner for general bipedal robots with non-point-contact feet through the use of a task-space whole-body controller that regulates centroidal momentum, thereby ensuring that the robot's behavior aligns with the desired template dynamics. To demonstrate the effectiveness of our proposed approach, we conduct simulations using the Sarcos©Guardian® XO®robot, which is a hybrid humanoid/exoskeleton with large, offset feet. The results demonstrate the practicality and effectiveness of our approach in achieving stable and versatile bipedal locomotion. 
    more » « less
  5. Multi-legged robots with six or more legs are not in common use, despite designs with superior stability, maneuverability, and a low number of actuators being available for over 20 years. This may be in part due to the difficulty in modeling multi-legged motion with slipping and producing reliable predictions of body velocity. Here, we present a detailed measurement of the foot contact forces in a hexapedal robot with multiple sliding contacts, and provide an algorithm for predicting these contact forces and the body velocity. The algorithm relies on the recently published observation that even while slipping, multi-legged robots are principally kinematic, and employ a friction law ansatz that allows us to compute the shape-change to body-velocity connection and the foot contact forces. This results in the ability to simulate motion plans for a large number of contacts, each potentially with slipping. Furthermore, in homogeneous environments, this kind of simulation can run in (parallel) logarithmic time of the planning horizon. 
    more » « less