skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Humanoid Contact Planning using Learned Centroidal Dynamics Prediction
Humanoid robots dynamically navigate an environment by interacting with it via contact wrenches exerted at intermittent contact poses. Therefore, it is important to consider dynamics when planning a contact sequence. Traditional contact planning approaches assume a quasi-static balance criterion to reduce the computational challenges of selecting a contact sequence over a rough terrain. This however limits the applicability of the approach when dynamic motions are required, such as when walking down a steep slope or crossing a wide gap. Recent methods overcome this limitation with the help of efficient mixed integer convex programming solvers capable of synthesizing dynamic contact sequences. Nevertheless, its exponential-time complexity limits its applicability to short time horizon contact sequences within small environments. In this paper, we go beyond current approaches by learning a prediction of the dynamic evolution of the robot centroidal momenta, which can then be used for quickly generating dynamically robust contact sequences for robots with arms and legs using a search-based contact planner. We demonstrate the efficiency and quality of the results of the proposed approach in a set of dynamically challenging scenarios.  more » « less
Award ID(s):
1825993
PAR ID:
10109473
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
5280 to 5286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. —Robots often have to perform manipulation tasks in close proximity to people (Fig 1). As such, it is desirable to use a robot arm that has limited joint torques so as to not injure the nearby person. Unfortunately, these limited torques then limit the payload capability of the arm. By using contact with the environment, robots can expand their reachable workspace that, otherwise, would be inaccessible due to exceeding actuator torque limits. We adapt our recently developed INSAT algorithm [1] to tackle the problem of torque-limited whole arm manipulation planning through contact. INSAT requires no prior over contact mode sequence and no initial template or seed for trajectory optimization. INSAT achieves this by interleaving graph search to explore the manipulator joint configuration space with incre- mental trajectory optimizations seeded by neighborhood solutions to find a dynamically feasible trajectory through contact. We demonstrate our results on a variety of manipulators and scenarios in simulation. We also experimentally show our planner exploiting robot-environment contact for the pick and place of a payload using a Kinova Gen3 robot. In comparison to the same trajectory running in free space, we experimentally show that the utilization of bracing contacts reduces the overall torque required to execute the trajectory. 
    more » « less
  2. Robust trajectory execution is an extension of cooperative collision avoidance that takes pre-planned trajectories directly into account. We propose an algorithm for robust trajectory execution that compensates for a variety of dynamic changes, including newly appearing obstacles, robots breaking down, imperfect motion execution, and external disturbances. Robots do not communicate with each other and only sense other robots’ positions and the obstacles around them. At the high-level we use a hybrid planning strategy employing both discrete planning and trajectory optimization with a dynamic receding horizon approach. The discrete planner helps to avoid local minima, adjusts the planning horizon, and provides good initial guesses for the optimization stage. Trajectory optimization uses a quadratic programming formulation, where all safety-critical parts are formulated as hard constraints. At the low-level, we use buffered Voronoi cells as a multi-robot collision avoidance strategy. Compared to ORCA, our approach supports higher-order dynamic limits and avoids deadlocks better. We demonstrate our approach in simulation and on physical robots, showing that it can operate in real time. 
    more » « less
  3. Robust trajectory execution is an extension of cooperative collision avoidance that takes pre-planned trajectories directly into account. We propose an algorithm for robust trajectory execution that compensates for a variety of dynamic changes, including newly appearing obstacles, robots breaking down, imperfect motion execution, and external disturbances. Robots do not communicate with each other and only sense other robots’ positions and the obstacles around them. At the high-level we use a hybrid planning strategy employing both discrete planning and trajectory optimization with a dynamic receding horizon approach. The discrete planner helps to avoid local minima, adjusts the planning horizon, and provides good initial guesses for the optimization stage. Trajectory optimization uses a quadratic programming formulation, where all safety-critical parts are formulated as hard constraints. At the low-level, we use buffered Voronoi cells as a multi-robot collision avoidance strategy. Compared to ORCA, our approach supports higher-order dynamic limits and avoids deadlocks better. We demonstrate our approach in simulation and on physical robots, showing that it can operate in real time. 
    more » « less
  4. Static verification is used to ensure the correctness of programs. While useful in critical applications, the high overhead associated with writing specifications limits its general applicability. Similarly, the run-time costs introduced by dynamic verification limit its practicality. Gradual verification validates partially specified code statically where possible and dynamically where necessary. As a result, software developers gain granular control over the trade-offs between static and dynamic verification. This paper contains an end-to-end presentation of gradual verification in action, with a focus on applying it to 𝐶0 (a safe subset of C) and implementing the required dynamic verification. 
    more » « less
  5. Contact planning is crucial to the locomotion performance of robots: to properly self-propel forward, it is not only important to determine the sequence of internal shape changes (e.g., body bending and limb shoulder joint oscillation) but also the sequence by which contact is made and broken between the mechanism and its environment. Prior work observed that properly coupling contact patterns and shape changes allows for computationally tractable gait design and efficient gait performance. The state of the art, however, made assumptions, albeit motivated by biological observation, as to how contact and shape changes can be coupled. In this paper, we extend the geometric mechanics (GM) framework to design contact patterns. Specifically, we introduce the concept of “contact space” to the GM framework. By establishing the connection between velocities in shape and position spaces, we can estimate the benefits of each contact pattern change and therefore optimize the sequence of contact patterns. In doing so, we can also analyze how a contact pattern sequence will respond to perturbations. We apply our framework to sidewinding robots and enable (1) effective locomotion direction control and (2) robust locomotion performance as the spatial resolution decreases. We also apply our framework to a hexapod robot with two back-bending joints and show that we can simplify existing hexapod gaits by properly reducing the number of contact state switches (during a gait cycle) without significant loss of locomotion speed. We test our designed gaits with robophysical experiments, and we obtain good agreement between theory and experiments. 
    more » « less