Understanding the interplay between genotype and fitness is a core question in evolutionary biology. Here, we address this challenge in the context of microbial adaptation to environmental stressors. This study explores the role of epistasis in bacterial adaptation by examining genetic and phenotypic changes in silver-adapted Escherichia coli populations, focusing on the role of beneficial mutations in two-component response systems (TCRS). To do this, we measured 24-hour growth assays and conducted whole-genome DNA and RNA sequencing on E. coli mutants that confer resistance to ionic silver. We showed recently that the R15L cusS mutation is central to silver resistance, primarily through upregulation of the cus efflux system. However, here we show that this mutation’s effectiveness is significantly enhanced by epistatic interactions with additional mutations in regulatory genes such as ompR, rho, and fur. These interactions reconfigure global stress response networks, resulting in robust and varied resistance strategies across different populations. This study underscores the critical role of epistasis in bacterial adaptation, illustrating how interactions between multiple mutations and how genetic backgrounds shape the resistance phenotypes of E. coli populations. This work also allowed for refinement of our model describing the role TCRS genes play in bacterial adaptation by now emphasizing that adaptation to environmental stressors is a complex, context-dependent process, driven by the dynamic interplay between genetic and environmental factors. These findings have broader implications for understanding microbial evolution and developing strategies to combat antimicrobial resistance.
This content will become publicly available on February 23, 2025
- Award ID(s):
- 1900220
- PAR ID:
- 10549342
- Editor(s):
- Spiers, Andrew
- Publisher / Repository:
- Frontiers in Genetics
- Date Published:
- Journal Name:
- Frontiers in Genetics
- Volume:
- 15
- ISSN:
- 1664-8021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Shimada, Tomohiro (Ed.)
-
Abstract Epistasis is caused by genetic interactions among mutations that affect fitness. To characterize properties and potential mechanisms of epistasis, we engineered eight double mutants that combined mutations from the rho and rpoB genes of Escherichia coli. The two genes encode essential functions for transcription, and the mutations in each gene were chosen because they were beneficial for adaptation to thermal stress (42.2 °C). The double mutants exhibited patterns of fitness epistasis that included diminishing returns epistasis at 42.2 °C, stronger diminishing returns between mutations with larger beneficial effects and both negative and positive (sign) epistasis across environments (20.0 °C and 37.0 °C). By assessing gene expression between single and double mutants, we detected hundreds of genes with gene expression epistasis. Previous work postulated that highly connected hub genes in coexpression networks have low epistasis, but we found the opposite: hub genes had high epistasis values in both coexpression and protein–protein interaction networks. We hypothesized that elevated epistasis in hub genes reflected that they were enriched for targets of Rho termination but that was not the case. Altogether, gene expression and coexpression analyses revealed that thermal adaptation occurred in modules, through modulation of ribonucleotide biosynthetic processes and ribosome assembly, the attenuation of expression in genes related to heat shock and stress responses, and with an overall trend toward restoring gene expression toward the unstressed state.
-
Understanding the relationship between mutations and their genomic and phenotypic consequences has been a longstanding goal of evolutionary biology. However, few studies have investigated the impact of mutations on gene expression and alternative splicing on the genome-wide scale. In this study, we aim to bridge this knowledge gap by utilizing whole-genome sequencing data and RNA sequencing data from 16 obligately parthenogenetic
Daphnia mutant lines to investigate the effects of ethyl methanesulfonate-induced mutations on gene expression and alternative splicing. Using rigorous analyses of mutations, expression changes and alternative splicing, we show that trans-effects are the major contributor to the variance in gene expression and alternative splicing between the wild-type and mutant lines, whereas cis mutations only affected a limited number of genes and do not always alter gene expression. Moreover, we show that there is a significant association between differentially expressed genes and exonic mutations, indicating that exonic mutations are an important driver of altered gene expression. -
Significance The role of mutations of large effect in adaptive evolution is a question of enduring interest. Large-effect mutations were once seen as unlikely contributors to adaptation, but we now have numerous examples. A major shortcoming of the evidence is the lack of information on fitness effects of mutations. We conducted a quantitative trait locus study that mapped fitness in an experimental field population of stickleback to a large-effect gene,
Ectodysplasin (Eda ). We compared this result with allele frequency change at the gene in a young lake population, which also revealed strong natural selection and large fitness effects of theEda gene and/or linked genes. Selection on ancient genetic variants may increase the prevalence of large-effect fitness variants in adaptive evolution. -
A fitness landscape is a map between the genotype and its reproductive success in a given environment. The topography of fitness landscapes largely governs adaptive dynamics, constraining evolutionary trajectories and the predictability of evolution. Theory suggests that this topography can be deformed by mutations that produce substantial changes to the environment. Despite its importance, the deformability of fitness landscapes has not been systematically studied beyond abstract models, and little is known about its reach and consequences in empirical systems. Here we have systematically characterized the deformability of the genome-wide metabolic fitness landscape of the bacterium
Escherichia coli . Deformability is quantified by the noncommutativity of epistatic interactions, which we experimentally demonstrate in mutant strains on the path to an evolutionary innovation. Our analysis shows that the deformation of fitness landscapes by metabolic mutations rarely affects evolutionary trajectories in the short range. However, mutations with large environmental effects produce long-range landscape deformations in distant regions of the genotype space that affect the fitness of later descendants. Our results therefore suggest that, even in situations in which mutations have strong environmental effects, fitness landscapes may retain their power to forecast evolution over small mutational distances despite the potential attenuation of that power over longer evolutionary trajectories. Our methods and results provide an avenue for integrating adaptive and eco-evolutionary dynamics with complex genetics and genomics.