The spread of infectious diseases is a highly complex spatiotemporal process, difficult to understand, predict, and effectively respond to. Machine learning and artificial intelligence (AI) have achieved impressive results in other learning and prediction tasks; however, while many AI solutions are developed for disease prediction, only a few of them are adopted by decision-makers to support policy interventions. Among several issues preventing their uptake, AI methods are known to amplify the bias in the data they are trained on. This is especially problematic for infectious disease models that typically leverage large, open, and inherently biased spatiotemporal data. These biases may propagate through the modeling pipeline to decision-making, resulting in inequitable policy interventions. Therefore, there is a need to gain an understanding of how the AI disease modeling pipeline can mitigate biased input data, in-processing models, and biased outputs. Specifically, our vision is to develop a large-scale micro-simulation of individuals from which human mobility, population, and disease ground-truth data can be obtained. From this complete dataset—which may not reflect the real world—we can sample and inject different types of bias. By using the sampled data in which bias is known (as it is given as the simulation parameter), we can explore how existing solutions for fairness in AI can mitigate and correct these biases and investigate novel AI fairness solutions. Achieving this vision would result in improved trust in such models for informing fair and equitable policy interventions.
more »
« less
On Improving Fairness of AI Models with Synthetic Minority Oversampling Techniques
Biased AI models result in unfair decisions. In response, a number of algorithmic solutions have been engineered to mitigate bias, among which the Synthetic Minority Oversampling Technique (SMOTE) has been studied, to an extent. Although the SMOTE technique and its variants have great potentials to help improve fairness, there is little theoretical justification for its success. In addition, formal error and fairness bounds are not clearly given. This paper attempts to address both issues. We prove and demonstrate that synthetic data generated by oversampling underrepresented groups can mitigate algorithmic bias in AI models, while keeping the predictive errors bounded. We further compare this technique to the existing state-of-the-art fair AI techniques on five datasets using a variety of fairness metrics. We show that this approach can effectively improve fairness even when there is a significant amount of label and selection bias, regardless of the baseline AI algorithm.
more »
« less
- Award ID(s):
- 1939728
- PAR ID:
- 10549626
- Publisher / Repository:
- Society for Industrial and Applied Mathematics
- Date Published:
- ISBN:
- 978-1-61197-765-3
- Page Range / eLocation ID:
- 874 - 882
- Subject(s) / Keyword(s):
- AI fairness sensitive feature synthetic data SMOTE
- Format(s):
- Medium: X
- Location:
- Minneapolis-St. Paul Twin Cities, MN, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
AI systems have been known to amplify biases in real-world data. Explanations may help human-AI teams address these biases for fairer decision-making. Typically, explanations focus on salient input features. If a model is biased against some protected group, explanations may include features that demonstrate this bias, but when biases are realized through proxy features, the relationship between this proxy feature and the protected one may be less clear to a human. In this work, we study the effect of the presence of protected and proxy features on participants’ perception of model fairness and their ability to improve demographic parity over an AI alone. Further, we examine how different treatments—explanations, model bias disclosure and proxy correlation disclosure—affect fairness perception and parity. We find that explanations help people detect direct but not indirect biases. Additionally, regardless of bias type, explanations tend to increase agreement with model biases. Disclosures can help mitigate this effect for indirect biases, improving both unfairness recognition and decision-making fairness. We hope that our findings can help guide further research into advancing explanations in support of fair human-AI decision-making.more » « less
-
Graph is a ubiquitous type of data that appears in many real-world applications, including social network analysis, recommendations and financial security. Important as it is, decades of research have developed plentiful computational models to mine graphs. Despite its prosperity, concerns with respect to the potential algorithmic discrimination have been grown recently. Algorithmic fairness on graphs, which aims to mitigate bias introduced or amplified during the graph mining process, is an attractive yet challenging research topic. The first challenge corresponds to the theoretical challenge, where the non-IID nature of graph data may not only invalidate the basic assumption behind many existing studies in fair machine learning, but also introduce new fairness definition(s) based on the inter-correlation between nodes rather than the existing fairness definition(s) in fair machine learning. The second challenge regarding its algorithmic aspect aims to understand how to balance the trade-off between model accuracy and fairness. This tutorial aims to (1) comprehensively review the state-of-the-art techniques to enforce algorithmic fairness on graphs and (2) enlighten the open challenges and future directions. We believe this tutorial could benefit researchers and practitioners from the areas of data mining, artificial intelligence and social science.more » « less
-
The COVID-19 pandemic was a catalyst for many different trends in our daily life worldwide. While there has been an overall rise in cybercrime during this time, there has been relatively little research done about malicious COVID-19 themed AndroidOS applications. With the rise in reports of users falling victim to malicious COVID-19 themed AndroidOS applications, there is a need to learn about the detection of malware for pandemics-themed mobile apps.. In this project, we extracted the permissions requests from 1959 APK files from a dataset containing benign and malware COVID-19 themed apps. We then created and compared eight unique models of four varying classifiers to determine their ability to identify potentially malicious APK files based on the permissions the APK file requests: support vector machine, neural network, decision trees, and categorical naive bayes. These classifiers were then trained using Synthetic Minority Oversampling Technique (SMOTE) to balance the dataset due to the lack of samples of malware compared to non-malware APKs. Finally, we evaluated the models using K-Fold Cross-Validation and found the decision tree classifier to be the best performing classifier.more » « less
-
Fairness Artificial Intelligence (AI) aims to identify and mitigate bias throughout the AI development process, spanning data collection, modeling, assessment, and deployment—a critical facet of establishing trustworthy AI systems. Tackling data bias through techniques like reweighting samples proves effective for promoting fairness. This paper undertakes a systematic exploration of reweighting samples for conventional Machine-Learning (ML) models, utilizing five models for binary classification on datasets such as Adult Income and COMPAS, incorporating various protected attributes. In particular, AI Fairness 360 (AIF360) from IBM, a versatile open-source library aimed at identifying and mitigating bias in machine-learning models throughout the entire AI application lifecycle, is employed as the foundation for conducting this systematic exploration. The evaluation of prediction outcomes employs five fairness metrics from AIF360, elucidating the nuanced and model-specific efficacy of reweighting samples in fostering fairness within traditional ML frameworks. Experimental results illustrate that reweighting samples effectively reduces bias in traditional ML methods for classification tasks. For instance, after reweighting samples, the balanced accuracy of Decision Tree (DT) improves to 100%, and its bias, as measured by fairness metrics such as Average Odds Difference (AOD), Equal Opportunity Difference (EOD), and Theil Index (TI), is mitigated to 0. However, reweighting samples does not effectively enhance the fairness performance of K Nearest Neighbor (KNN). This sheds light on the intricate dynamics of bias, underscoring the complexity involved in achieving fairness across different models and scenarios.more » « less