We present a system for inductive program synthesis called DreamCoder, which inputs a corpus of synthesis problems each specified by one or a few examples, and automatically derives a library of program components and a neural search policy that can be used to efficiently solve other similar synthesis problems. The library and search policy bootstrap each other iteratively through a variant of "wake-sleep" approximate Bayesian learning. A new refactoring algorithm based on E-graph matching identifies common sub-components across synthesized programs, building a progressively deepening library of abstractions capturing the structure of the input domain. We evaluate on eight domains including classic program synthesis areas and AI tasks such as planning, inverse graphics, and equation discovery. We show that jointly learning the library and neural search policy leads to solving more problems, and solving them more quickly.
more »
« less
Equivalence by Canonicalization for Synthesis-Backed Refactoring
We present an enumerative program synthesis framework calledcomponent-based refactoringthat can refactor direct style code that does not use library components into equivalent combinator style code that does use library components. This framework introduces a sound but incomplete technique to check the equivalence of direct code and combinator code calledequivalence by canonicalizationthat does not rely on input-output examples or logical specifications. Moreover, our approach can repurpose existing compiler optimizations, leveraging decades of research from the programming languages community. We instantiated our new synthesis framework in two contexts: (i) higher-order functional combinators such as and in the statically-typed functional programming language Elm and (ii) high-performance numerical computing combinators provided by the NumPy library for Python. We implemented both instantiations in a tool called Cobbler and evaluated it on thousands of real programs to test the performance of the component-based refactoring framework in terms of execution time and output quality. Our work offers evidence that synthesis-backed refactoring can apply across a range of domains without specification beyond the input program.
more »
« less
- Award ID(s):
- 2129008
- PAR ID:
- 10549725
- Publisher / Repository:
- ACM PLDI
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 8
- Issue:
- PLDI
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 1879 to 1904
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There are a wide array of methods for writing code generators. We advocate for a point in the design space, which we call *metaprogramming with combinators*, where programmers use (and write) combinator libraries that directly manipulate object language terms. The key language feature that makes this style of programming palatable is quasiquotation. Our approach leverages quasiquotation and other host language features to provide what is essentially a rich, well-typed macro language. Unlike other approaches, metaprogramming with combinators allows full control over generated code, thereby also providing full control over performance and resource usage. This control does not require sacrificing the ability to write high-level abstractions. We demonstrate metaprogramming with combinators through several code generators written in Haskell that produce VHDL targeted to Xilinx FPGAs.more » « less
-
We propose a new conflict-driven program synthesis technique that is capable of learning from past mistakes. Given a spurious program that violates the desired specification, our synthesis algorithm identifies the root cause of the conflict and learns new lemmas that can prevent similar mistakes in the future. Specifically, we introduce the notion of equivalence modulo conflict and show how this idea can be used to learn useful lemmas that allow the synthesizer to prune large parts of the search space. We have implemented a general purpose CDCL-style program synthesizer called Neo and evaluate it in two different application domains, namely data wrangling in R and functional programming over lists. Our experiments demonstrate the substantial benefits of conflict driven learning and show that Neo outperforms two state-of-the-art synthesis tools, Morpheus and DeepCoder, that target these respective domainsmore » « less
-
We present a new general-purpose synthesis technique for generating programs from input-output examples. Our method, called metric program synthesis, relaxes the observational equivalence idea (used widely in bottom-up enumerative synthesis) into a weaker notion of observational similarity, with the goal of reducing the search space that the synthesizer needs to explore. Our method clusters programs into equivalence classes based on an expert-provided distance metric and constructs a version space that compactly represents “approximately correct” programs. Then, given a “close enough” program sampled from this version space, our approach uses a distance-guided repair algorithm to find a program that exactly matches the given input-output examples. We have implemented our proposed metric program synthesis technique in a tool called SyMetric and evaluate it in three different domains considered in prior work. Our evaluation shows that SyMetric outperforms other domain-agnostic synthesizers that use observational equivalence and that it achieves results competitive with domain-specific synthesizers that are either designed for or trained on those domains.more » « less
-
We present a new domain-agnostic synthesis technique for generating programs from input-output examples. Our method, called metric program synthesis, relaxes the well-known observational equivalence idea (used widely in bottom-up enumerative synthesis) into a weaker notion of observational similarity, with the goal of reducing the search space that the synthesizer needs to explore. Our method clusters programs into equivalence classes based on a distance metric and constructs a version space that compactly represents ""approximately correct"" programs. Then, given a ""close enough"" program sampled from this version space, our approach uses a distance-guided repair algorithm to find a program that exactly matches the given input-output examples. We have implemented our proposed metric program synthesis technique in a tool called SyMetric and evaluate it in three different domains considered in prior work. Our evaluation shows that SyMetric outperforms other domain-agnostic synthesizers that use observational equivalence and that it achieves results competitive with domain-specific synthesizers that are either designed for or trained on those domains.more » « less
An official website of the United States government

