skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sustained bacterial N2O reduction at acidic pH
Abstract Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbornosZgenes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with aSerratiasp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by aDesulfosporosinussp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermentingSerratiasp. supplying amino acids as essential growth factors to the N2O-reducingDesulfosporosinussp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.  more » « less
Award ID(s):
1831582 1831599
PAR ID:
10549771
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature publishing group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrous oxide (N2O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N2O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N2O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N2O assessed N2O reduction at pH 4.5 and 7.3. All microcosms consumed N2O, with lag times of up to 7 months observed in microcosms with 2 mM N2O. Comparative metagenome analysis revealed that Rhodocyclaceae dominated in circumneutral microcosms under both N2O feeding regimes. At pH 4.5, Peptococcaceae dominated in high-N2O, and Hyphomicrobiaceae in low-N2O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N2O-reducing microcosms harbored nos operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type nosZ and lacking nitrite reductase genes (nirS/K). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N2O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5–5.7 soil metagenome datasets revealed that nosZ genes commonly occur, suggesting broad distribution of N2O reduction potential in acidic soils. 
    more » « less
  2. Abstract CO2electroreduction (CO2R) operating in acidic media circumvents the problems of carbonate formation and CO2crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO2R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali‐cation‐free CO2R in pure acid. However, without alkali cations, stabilizing *CO2intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube‐supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single‐atom active site with energetically localizeddstates to strengthen the adsorbate‐surface interactions, which stabilizes *CO2intermediates at the acidic interface (pH=1). As a result, we realize CO2conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO2is successfully converted in cation exchanged membrane‐based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO2R compared to alkaline conditions, since the potential‐limiting step, *CO2to *COOH, is pH‐dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO2R. 
    more » « less
  3. ABSTRACT Nitrous oxide (N2O) reductase, the sole natural microbial sink for N2O, exists in two microbial clades:nosZI andnosZII. Although previous studies have explored inter‐clade ecological differentiation, the intra‐clade variations and their implications for N2O dynamics remain understudied. This study investigated both inter‐ and intra‐clade ecological differentiation among N2O reducers, the drivers influencing these patterns, and their effects on N2O emissions across continental‐scale river systems. The results showed that bothnosZI andnosZII community turnovers were associated with similar key environmental factors, particularly total phosphorus (TP), but these variables explained a larger proportion of variation in thenosZI community. The influence of mean annual temperature (MAT) on community composition increased for more widespread N2O‐reducing taxa. We identified distinct ecological clusters within each clade of N2O reducers and observed identical ecological clustering patterns across both clades. These clusters were primarily characterized by distinct MAT regimes, coarse sediment texture as well as low TP levels, and high abundance of N2O producers, with MAT‐related clusters constituting predominant proportions. Intra‐clade ecological differentiation was a crucial predictor of N2O flux and reduction efficiency. Although different ecological clusters showed varying or even contrasting associations with N2O dynamics, the shared ecological clusters across clades exhibited similar trends. Low‐MAT clusters in both thenosZI andnosZII communities were negatively correlated with denitrification‐normalized N2O flux and the N2O:(N2O + N2) ratio, whereas high‐MAT clusters showed positive correlations. This contrasting pattern likely stems from low‐MAT clusters being better adapted to eutrophic conditions and their more frequent co‐occurrence with N2O‐producing genes. These findings advance our understanding of the distribution and ecological functions of N2O reducers in natural ecosystems, suggesting that warming rivers may have decreased N2O reduction efficiency and thereby amplify temperature‐driven emissions. 
    more » « less
  4. Abstract Wildfires may increase soil emissions of trace nitrogen (N) gases like nitric oxide (NO) and nitrous oxide (N2O) by changing soil physicochemical conditions and altering microbial processes like nitrification and denitrification. When 34 studies were synthesized, we found a significant increase in both NO and N2O emissions up to 1 year post-fire across studies spanning ecosystems globally. However, when fluxes were separated by ecosystem type, we found that individual ecosystem types responded uniquely to fire. Forest soils tended to emit more N2O after fire, but there was no significant effect on NO. Shrubland soils showed significant increases in both NO and N2O emissions after fires; often with extremely large but short-lived NO pulses occurring immediately after fire. Grassland NO emissions increased after fire, but the size of this effect was small relative to shrublands. N2O emissions from burned grasslands were highly variable with no significant effect. To better understand the variation in responses to fire across global ecosystems, more consistent measurements of variables recognized as important controls on soil fluxes of NO and N2O (e.g., N cycling rates, soil water content, pH, and substrate availability) are needed across studies. We also suggest that fire-specific elements like burn severity, microbial community succession, and the presence of char be considered by future studies. Our synthesis suggests that fires can exacerbate ecosystem N loss long after they burn, increasing soil emissions of NO and N2O with implications for ecosystem N loss, climate, and regional air quality as wildfires increase globally. 
    more » « less
  5. Abstract Mammalian cell cultures in bioreactors rely heavily on critical process parameter control to ensure optimal growth, productivity, and reproducibility to produce recombinant therapeutic proteins. Culture pH has been shown to be a critical parameter that influences growth, productivity, and critical quality attributes. Typically, pH is either controlled to a set‐point throughout the culture or uses a single pH shift to achieve higher productivity and more desirable charge variant profiles. The pH is usually maintained by CO2and base additions. For CO2controlled cultures, using a set‐point can result in an accumulation of CO2, which has detrimental effects on mammalian cell growth and protein production. In this study, a dynamic pH profile was implemented that allowed the pH control in the bioreactor to mimic the natural uncontrolled pH profile observed in shake flask cultures. This dynamic pH profile employs multiple pH shifts during the exponential phase of a single IgG1producing CHO‐K1 cell line. The results show that a dynamic pH profile was able to successfully alleviate CO2accumulation and increase the cell‐specific, as well as overall culture productivity. Impacts of the dynamic pH profile on product quality attributes, including glycosylation and charge variants, were also evaluated, showing mixed impacts on the glycosylation pattern and a positive impact on charge variants. Since the ideal glycosylation pattern is highly dependent on the intended function of the recombinant antibody, impacts on product quality should be evaluated on a “per process” basis. 
    more » « less