This content will become publicly available on May 1, 2025
- Award ID(s):
- 2004420
- PAR ID:
- 10549803
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Electronics
- Volume:
- 7
- Issue:
- 5
- ISSN:
- 2520-1131
- Page Range / eLocation ID:
- 336-347
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Memristive devices can offer dynamic behaviour, analogue programmability, and scaling and integration capabilities. As a result, they are of potential use in the development of information processing and storage devices for both conventional and unconventional computing paradigms. Their memristive switching processes originate mainly from the modulation of the number and position of structural defects or compositional impurities—what are commonly referred to as imperfections. While the underlying mechanisms and potential applications of memristors based on traditional bulk materials have been extensively studied, memristors based on van der Waals materials have only been considered more recently. Here we examine imperfection-enabled memristive switching in van der Waals materials. We explore how imperfections— together with the inherent physicochemical properties of the van der Waals materials—create different switching mechanisms, and thus provide a range of opportunities to engineer switching behaviour in memristive devices. We also discuss the challenges involved in terms of material selection, mechanism investigation and switching uniformity control, and consider the potential of van der Waals memristors in system-level implementations of efficient computing technologies.more » « less
-
Abstract Polaritons are quasiparticles originating from strong interactions between photons and elementary excitations that could enable high tunability, tight electromagnetic field confinement, and large density of photonic states, making it possible to achieve novel and otherwise inaccessible functionalities. For these reasons, polaritons spawn great interest in the fields of physics, materials science, and optics for both fundamental studies as well as potential applications (e.g., modulators, photodetectors, photoluminescence, etc.). In recent years, the explosive growth of research in graphene and other 2D van der Waals materials is witnessed because they provide a new platform that substantially complements conventional metals, dielectrics, and semiconductors to investigate different polariton modes. This review highlights the works published in recent years on the topic of polariton photonics based on structured metals, graphene, and transition‐metal dichalcogenides (TMDs). The exotic optical properties of the polaritons in metallic structures and 2D van der Waals materials offer bright prospects for the development of high‐performance photonic and optoelectronic devices.
-
Optical control of magnons in two-dimensional (2D) materials promises new functionalities for spintronics and magnonics in atomically thin devices. Here, we report control of magnon dynamics, using laser polarization, in a ferromagnetic van der Waals (vdW) material, Fe3.6Co1.4GeTe2. The magnon amplitude, frequency, and lifetime are controlled and monitored by time-resolved pump-probe spectroscopy. We show substantial (over 25%) and continuous modulation of magnon dynamics as a function of incident laser polarization. Our results suggest that the modification of the effective demagnetization field and magnetic anisotropy by the pump laser pulses with different polarizations is due to anisotropic optical absorption. This implies that pump laser pulses modify the local spin environment, which enables the launch of magnons with tunable dynamics. Our first-principles calculations confirm the anisotropic optical absorption of different crystal orientations. Our findings suggest a new route for the development of opto-spintronic or opto-magnonic devices.
-
Abstract Spintronics applications of thin‐film magnets require control and design of specific magnetic properties. Exchange bias, originating from the pinning of spins in a ferromagnet by these of an antiferromagnet, is a part of the highly important elements for spintronics applications. Here, an exchange bias of ≈90 mT in a van der Waals ferromagnet encapsulated by two antiferromagnets at 5 K, the value of which is highly tunable by the field coolings, is reported. The non‐antisymmetric dependence of exchange bias on field cooling is explained through considering an uncompensated interfacial magnetic layer of an antiferromagnet with a noncollinear spin texture, and a weak antiferromagnetic order in the oxidized layer, at two ferromagnet/antiferromagnet interfaces. This work opens up new routes toward designing and controlling 2D spintronic devices made of atomically thin van der Waals magnets.
-
Abstract Semiconductor microcavities with a high quality‐factor are an important component for photonics research and technology, especially in the strong coupling regime. While van der Waals semiconductors have emerged as an interesting platform for photonics due to their strong exciton–photon interaction strength and engineering flexibility, incorporating them in photonic devices requires heterogeneous integration and remains a challenge. This study demonstrates a method to assemble high quality factor microcavities for van der Waals materials, using high reflectance top mirrors which, similar to van der Waals materials themselves, can be nondestructively and reliably peeled off the substrate and transferred onto the rest of the device. Microcavities are created with quality factors consistently above 2000 and up to 11000 ± 800; and the strong coupling regime is demonstrated. The method can be generalized to other types of heterogeneously integrated photonic structures and will facilitate research on cavity quantum electrodynamic and photonic systems using van der Waals materials.