skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: High Quality Factor Microcavity for Van der Waals Semiconductor Polaritons Using a Transferrable Mirror
Abstract Semiconductor microcavities with a high quality‐factor are an important component for photonics research and technology, especially in the strong coupling regime. While van der Waals semiconductors have emerged as an interesting platform for photonics due to their strong exciton–photon interaction strength and engineering flexibility, incorporating them in photonic devices requires heterogeneous integration and remains a challenge. This study demonstrates a method to assemble high quality factor microcavities for van der Waals materials, using high reflectance top mirrors which, similar to van der Waals materials themselves, can be nondestructively and reliably peeled off the substrate and transferred onto the rest of the device. Microcavities are created with quality factors consistently above 2000 and up to 11000 ± 800; and the strong coupling regime is demonstrated. The method can be generalized to other types of heterogeneously integrated photonic structures and will facilitate research on cavity quantum electrodynamic and photonic systems using van der Waals materials.  more » « less
Award ID(s):
2132470
PAR ID:
10378365
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
11
Issue:
1
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polaritons are quasiparticles originating from strong interactions between photons and elementary excitations that could enable high tunability, tight electromagnetic field confinement, and large density of photonic states, making it possible to achieve novel and otherwise inaccessible functionalities. For these reasons, polaritons spawn great interest in the fields of physics, materials science, and optics for both fundamental studies as well as potential applications (e.g., modulators, photodetectors, photoluminescence, etc.). In recent years, the explosive growth of research in graphene and other 2D van der Waals materials is witnessed because they provide a new platform that substantially complements conventional metals, dielectrics, and semiconductors to investigate different polariton modes. This review highlights the works published in recent years on the topic of polariton photonics based on structured metals, graphene, and transition‐metal dichalcogenides (TMDs). The exotic optical properties of the polaritons in metallic structures and 2D van der Waals materials offer bright prospects for the development of high‐performance photonic and optoelectronic devices. 
    more » « less
  2. Abstract The cooperative phenomena stemming from the radiation field-mediated coupling between individual quantum emitters are presently attracting broad interest for applications related to on-chip photonic quantum memories and long-range entanglement. Common to these applications is the generation of electro-magnetic modes over macroscopic distances. Much research, however, is still needed before such systems can be deployed in the form of practical devices, starting with the investigation of alternate physical platforms. Quantum emitters in two-dimensional (2D) systems provide an intriguing route because these materials can be adapted to arbitrarily shaped substrates to form hybrid systems wherein emitters are near-field-coupled to suitable optical modes. Here, we report a scalable coupling method allowing color center ensembles in a van der Waals material (hexagonal boron nitride) to couple to a delocalized high-quality plasmonic surface lattice resonance. This type of architecture is promising for photonic applications, especially given the ability of the hexagonal boron nitride emitters to operate as single-photon sources at room temperature. 
    more » « less
  3. The efficient, large-scale generation and control of photonic modes guided by van der Waals materials remains as a challenge despite their potential for on-chip photonic circuitry. We report three-atom-thick waveguides—δ waveguides—based on wafer-scale molybdenum disulfide (MoS2) monolayers that can guide visible and near-infrared light over millimeter-scale distances with low loss and an efficient in-coupling. The extreme thinness provides a light-trapping mechanism analogous to a δ-potential well in quantum mechanics and enables the guided waves that are essentially a plane wave freely propagating along the in-plane, but confined along the out-of-plane, direction of the waveguide. We further demonstrate key functionalities essential for two-dimensional photonics, including refraction, focusing, grating, interconnection, and intensity modulation, by integrating thin-film optical components with δ waveguides using microfabricated dielectric, metal, or patterned MoS2
    more » « less
  4. This work reports on a metasurface based on optical nanoantennas made of van der Waals material hexagonal boron nitride. The optical nanoantenna made of hyperbolic material was shown to support strong localized resonant modes stemming from the propagating high-k waves in the hyperbolic material. An analytical approach was used to determine the mode profile and type of cuboid nanoantenna resonances. An electric quadrupolar mode was demonstrated to be associated with a resonant magnetic response of the nanoantenna, which resembles the induction of resonant magnetic modes in high-refractive-index nanoantennas. The analytical model accurately predicts the modes of cuboid nanoantennas due to the strong boundary reflections of the high-k waves, a capability that does not extend to plasmonic or high-refractive-index nanoantennas, where the imperfect reflection and leakage of the mode from the cavity complicate the analysis. In the reported metasurface, excitations of the multipolar resonant modes are accompanied by directional scattering and a decrease in the metasurface reflectance to zero, which is manifested as the resonant Kerker effect. Van der Waals nanoantennas are envisioned to support localized resonances and can become an important functional element of metasurfaces and transdimensional photonic components. By designing efficient subwavelength scatterers with high-quality-factor resonances, this work demonstrates that this type of nanoantenna made of naturally occurring hyperbolic material is a viable substitute for plasmonic and all-dielectric nanoantennas in developing ultra-compact photonic components. 
    more » « less
  5. Bound states in the continuum (BICs) hold significant promise in manipulating electromagnetic fields and reducing losses in optical structures, leading to advancements in fundamental research and practical applications. Despite their observation in various optical systems, the behavior of BIC in whispering-gallery-modes (WGMs) optical microcavities, essential components of photonic integrated chips, has yet to be thoroughly explored. In this study, we propose and experimentally identify a robust mechanism for generating quasi-BIC in a single deformed microcavity. By introducing boundary deformations, we construct stable unidirectional radiation channels as leaking continuum shared by different resonant modes and experimentally verify their external strong mode coupling. This results in drastically suppressed leaking loss of one originally long-lived resonance, manifested as more than a threefold enhancement of its quality (Q) factor, while the other short-lived resonance becomes more lossy, demonstrating the formation of Friedrich–Wintgen quasi-BICs as corroborated by the theoretical model and experimental data. This research will provide a practical approach to enhance theQ-factor of optical microcavities, opening up potential applications in the area of deformed microcavities, nonlinear optics, quantum optics, and integrated photonics. 
    more » « less