Abstract Sterically loaded, anionic pyridine has been synthesized and utilized successfully in the stabilization of a isoleptic series of coinage metal complexes. The treatment of [4‐(Ph3B)‐2,6‐Trip2Py]K (Trip=2,4,6‐iPr3C6H2) with CuBr(PPh3), AgCl(PPh3) or AuCl(PPh3) (Py=pyridine) afforded the corresponding [4‐(Ph3B)‐2,6‐Trip2Py]M(PPh3) (M=Au, Ag, Cu) complexes, via salt metathesis, as isolable, crystalline solids. Notably, these reactions avoid the facile single electron transfer chemistry reported with the less bulky ligand systems. The X‐ray structures revealed that they are two‐coordinate metal adducts. The M−N and M−P bond distances are longest in the silver and shortest in the copper adduct among the three group 11 family members. Computational analysis revealed an interesting stability dependence on steric bulk of the anionic pyridine (i. e., pyridyl borate) ligand. A comparison of structures and bonding of [4‐(Ph3B)‐2,6‐Trip2Py]Au(PPh3) to pyridine andm‐terphenyl complexes, {[2,6‐Trip2Py]Au(PPh3)}[SbF6] and [2,6‐Trip2Ph]Au(PPh3) are also provided. The Au(I) isocyanide complex, [4‐(Ph3B)‐2,6‐Trip2Py]Au(CNBut) has been stabilized using the same anionic pyridylborate illustrating that it can support other gold‐ligand moieties as well.
more »
« less
This content will become publicly available on December 1, 2025
Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement
Abstract Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4cluster and the emission of the Cu8(p-MBT)8(PPh3)4cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.
more »
« less
- PAR ID:
- 10549972
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Au nanoclusters often demonstrate useful optical properties such as visible/near‐infrared photoluminescence, in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8e−superatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide‐ and triphenylphosphine‐ligated Au11nanocluster, affording a cluster with a proposed molecular formula PtAu10(PPh3)7Br3. Electrochemical and spectroscopic analysis reveal an expansion of the HOMO–LUMO gap due to the Pt dopant, as well as relatively strong near‐infrared (NIR) photoluminescence which is atypical for an M11cluster (λmax= 700 nm, Φ = 1.88 %). The Pt dopant additionally boosted photostability; more than tenfold. Lastly, we demonstrate the application of the PtAu10cluster's NIR photoluminescence in the detection of the nitroaromatic compound 2,4‐dinitrotoluene, with a limit‐of‐detection of 9.52 μM (1.74 ppm). The notable ability of a single central Pt dopant to unlock photoluminescence in a non‐luminescent nanocluster highlights the advantages of heterometal doping in the tuning of both the optical and thermodynamic properties of Au nanoclusters.more » « less
-
Abstract We present a near-infrared (NIR) candidate star cluster catalog for the central kiloparsec of M82 based on new JWST NIRCam images. We identify star cluster candidates using the F250M filter, finding 1357 star cluster candidates with stellar masses >104M⊙. Compared to previous optical catalogs, nearly all (87%) of the candidates we identify are new. The star cluster candidates have a median intrinsic cluster radius of ≈1 pc and stellar masses up to 106M⊙. By comparing the color–color diagram to dust-freeyggdrasilstellar population models, we estimate that the star cluster candidates haveAV∼ 3−24 mag, corresponding toA2.5μm∼ 0.3−2.1 mag. There is still appreciable dust extinction toward these clusters into the NIR. We measure the stellar masses of the star cluster candidates, assuming ages of 0 and 8 Myr. The slope of the resulting cluster mass function isβ= 1.9 ± 0.2, in excellent agreement with studies of star clusters in other galaxies.more » « less
-
Abstract Template‐assisted synthesis of well‐defined polynuclear clusters remains a challenge for [M4] square planar topologies. Herein, we present a tetraamine scaffoldRL(NH2)4, where L is a rigidified resorcin[4]arene, to direct the formation ofC4‐symmetricRL(NH)4Cu4clusters with Cu−Cu distances around 2.7 Å, suggesting metal‐metal direct interactions are operative since the sum of copper's van der Waals radii is 2.8 Å. DFT calculations display HOMO to HOMO‐3 residing all within a 0.1 eV gap. These four orbitals display significant electron density contribution from the Cu centers suggesting a delocalized electronic structure. The one‐electron oxidized [Cu4]+species was probed by variable temperature X‐band continuous wave‐electron paramagnetic resonance (CW‐EPR), which displays a multiline spectrum at room temperature. This work presents a novel synthetic strategy for [M4] clusters and a new platform to investigate activation of small molecules.more » « less
An official website of the United States government
