skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2154346

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4cluster and the emission of the Cu8(p-MBT)8(PPh3)4cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract This Roadmap article provides a succinct, comprehensive overview of the state of electronic structure (ES) methods and software for molecular and materials simulations. Seventeen distinct sections collect insights by 51 leading scientists in the field. Each contribution addresses the status of a particular area, as well as current challenges and anticipated future advances, with a particular eye towards software related aspects and providing key references for further reading. Foundational sections cover density functional theory and its implementation in real-world simulation frameworks, Green’s function based many-body perturbation theory, wave-function based and stochastic ES approaches, relativistic effects and semiempirical ES theory approaches. Subsequent sections cover nuclear quantum effects, real-time propagation of the ES, challenges for computational spectroscopy simulations, and exploration of complex potential energy surfaces. The final sections summarize practical aspects, including computational workflows for complex simulation tasks, the impact of current and future high-performance computing architectures, software engineering practices, education and training to maintain and broaden the community, as well as the status of and needs for ES based modeling from the vantage point of industry environments. Overall, the field of ES software and method development continues to unlock immense opportunities for future scientific discovery, based on the growing ability of computations to reveal complex phenomena, processes and properties that are determined by the make-up of matter at the atomic scale, with high precision. 
    more » « less
  3. Abstract Organic emitters that exhibit room‐temperature phosphorescence (RTP) in neat films have application potential for optoelectronic devices, bio‐imaging, and sensing. Due to molecular vibrations or rotations, the majority of triplet excitons recombine rapidly via non‐radiative processes in purely organic emitters, making it challenging to observe RTP in amorphous films. Here, a chemical strategy to enhance RTP in amorphous neat films is reported, by utilizing through‐space charge‐transfer (TSCT) effect induced by intramolecular steric hindrance. The donor and acceptor groups interact via spatial orbital overlaps, while molecular motions are suppressed simultaneously. As a result, triplets generated under photo‐excitation are stabilized in amorphous films, contributing to phosphorescence even at room temperature. The solvatochromic effect on the steady‐state and transient photoluminescence reveals the charge‐transfer feature of involved excited states, while the TSCT effect is further experimentally resolved by femtosecond transient absorption spectroscopy. The designed luminescent materials with pronounced TSCT effect show RTP in amorphous films, with lifetimes up to ≈40 ms, comparable to that in a rigid polymer host. Photoluminescence afterglow longer than 3 s is observed in neat films at room temperature. Therefore, it is demonstrated that utilizing intramolecular steric hindrance to stabilize long‐lived triplets leads to phosphorescence in amorphous films at room temperature. 
    more » « less
  4. Abstract Synthetic fluorescent protein chromophores have been reported for their singlet state fluorescence properties and applications in bioimaging, but rarely for the triplet state chemistries. Herein, we enabled their photo‐sensitizing and photo‐crosslinking properties through rational modulations. Extension of molecular conjugation and introduction of heavy atoms promoted the generation of reactive oxygen species. Unlike other photosensitizers, these chromophores selectively photo‐crosslinked aggregated proteins and uncovered the interactome profiles. We also exemplified their general applications in chromophore‐assisted light inactivation, photodynamic therapy and photo induced polymerization. Theoretical calculation, pathway analysis and transient absorption spectroscopy provided mechanistic insights for this triplet state chemistry. Overall, this work expands the function and application of synthetic fluorescent protein chromophores by enabling their triplet excited state properties. 
    more » « less
  5. Free, publicly-accessible full text available May 13, 2026