skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computing Optimal Equilibria and Mechanisms via Learning in Zero-Sum Extensive-Form Games
We introduce a new approach for computing optimal equilibria and mechanisms via learning in games. It applies to extensive-form settings with any number of players, including mechanism design, information design, and solution concepts such as correlated, communication, and certification equilibria. We observe that optimal equilibria are minimax equilibrium strategies of a player in an extensiveform zero-sum game. This reformulation allows us to apply techniques for learning in zero-sum games, yielding the first learning dynamics that converge to optimal equilibria, not only in empirical averages, but also in iterates. We demonstrate the practical scalability and flexibility of our approach by attaining state-of-the-art performance in benchmark tabular games, and by computing an optimal mechanism for a sequential auction design problem using deep reinforcement learning.  more » « less
Award ID(s):
1901403
PAR ID:
10550008
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
NeurIPS23
Date Published:
Format(s):
Medium: X
Location:
New Orleans, LA
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zerosum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of O(d/ε2) iterations to ε-Nash equilibria in the 4d-dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as O(d/ε) iterations to ε-Nash equilibria. This quadratic speed-up relative to Jain and Watrous’ original algorithm sets a new benchmark for computing ε-Nash equilibria in quantum zero-sum games. 
    more » « less
  2. Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zero-sum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of O ( d / ϵ 2 ) iterations to ϵ -Nash equilibria in the 4 d -dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as O ( d / ϵ ) iterations to ϵ -Nash equilibria. This quadratic speed-up relative to Jain and Watrous' original algorithm sets a new benchmark for computing ϵ -Nash equilibria in quantum zero-sum games. 
    more » « less
  3. Policy gradient methods enjoy strong practical performance in numerous tasks in reinforcement learning. Their theoretical understanding in multiagent settings, however, remains limited, especially beyond two-player competitive and potential Markov games. In this paper, we develop a new framework to characterize optimistic policy gradient methods in multi-player Markov games with a single controller. Specifically, under the further assumption that the game exhibits an equilibrium collapse, in that the marginals of coarse correlated equilibria (CCE) induce Nash equilibria (NE), we show convergence to stationary ϵ-NE in O(1/ϵ2) iterations, where O(⋅) suppresses polynomial factors in the natural parameters of the game. Such an equilibrium collapse is well-known to manifest itself in two-player zero-sum Markov games, but also occurs even in a class of multi-player Markov games with separable interactions, as established by recent work. As a result, we bypass known complexity barriers for computing stationary NE when either of our assumptions fails. Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games. 
    more » « less
  4. Function approximation (FA) has been a critical component in solving large zero-sum games. Yet, little attention has been given towards FA in solving general-sum extensive-form games, despite them being widely regarded as being computationally more challenging than their fully competitive or cooperative counterparts. A key challenge is that for many equilibria in general-sum games, no simple analogue to the state value function used in Markov Decision Processes and zero-sum games exists. In this paper, we propose learning the Enforceable Payoff Frontier (EPF)---a generalization of the state value function for general-sum games. We approximate the optimal Stackelberg extensive-form correlated equilibrium by representing EPFs with neural networks and training them by using appropriate backup operations and loss functions. This is the first method that applies FA to the Stackelberg setting, allowing us to scale to much larger games while still enjoying performance guarantees based on FA error. Additionally, our proposed method guarantees incentive compatibility and is easy to evaluate without having to depend on self-play or approximate best-response oracles. 
    more » « less
  5. We investigate learning the equilibria in non-stationary multi-agent systems and address the challenges that differentiate multi-agent learning from single-agent learning. Specifically, we focus on games with bandit feedback, where testing an equilibrium can result in substantial regret even when the gap to be tested is small, and the existence of multiple optimal solutions (equilibria) in stationary games poses extra challenges. To overcome these obstacles, we propose a versatile black-box approach applicable to a broad spectrum of problems, such as general-sum games, potential games, and Markov games, when equipped with appropriate learning and testing oracles for stationary environments. Our algorithms can achieve O(∆^1/4 T^3/4) regret when the degree of nonstationarity, as measured by total variation ∆, is known, and O(∆^1/5 T^4/5) regret when ∆ is unknown, where T is the number of rounds. Meanwhile, our algorithm inherits the favorable dependence on number of agents from the oracles. As a side contribution that may be independent of interest, we show how to test for various types of equilibria by a black-box reduction to single-agent learning, which includes Nash equilibria, correlated equilibria, and coarse correlated equilibria. 
    more » « less