skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hot Gas Outflow Properties of the Starburst Galaxy NGC 4945
Abstract We analyze 330 ks of Chandra X-ray imaging and spectra of the nearby, edge-on starburst and Seyfert type 2 galaxy NGC 4945 to measure the hot gas properties along the galactic outflows. We extract and model spectra from 15 regions extending from −0.55 to +0.85 kpc above and below the galactic disk to determine the best-fit parameters and metal abundances. We find that the hot gas temperatures and number densities peak in the central regions and decrease along the outflows. These profiles are inconsistent with a spherical, adiabatically expanding wind model, suggesting the need to include mass loading and/or a nonspherical outflow geometry. We estimate the mass outflow rate of the hot wind to be 1.6Myr−1. Emission from charge exchange is detected in the northern outflow, and we estimate it contributes 12% to the emitted, broadband (0.5–7 keV) X-ray flux.  more » « less
Award ID(s):
2108140
PAR ID:
10550052
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
968
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We analyze image and spectral data from ≈365 ks of observations from the Chandra X-ray Observatory of the nearby, edge-on starburst galaxy NGC 253 to constrain properties of the hot phase of the outflow. We focus our analysis on the −1.1 to +0.63 kpc region of the outflow and define several regions for spectral extraction where we determine best-fit temperatures and metal abundances. We find that the temperatures and electron densities peak in the central ∼250 pc region of the outflow and decrease with distance. These temperature and density profiles are in disagreement with an adiabatic spherically expanding starburst wind model and suggest the presence of additional physics such as mass loading and nonspherical outflow geometry. Our derived temperatures and densities yield cooling times in the nuclear region of a few million years, which may imply that the hot gas can undergo bulk radiative cooling as it escapes along the minor axis. Our metal abundances of O, Ne, Mg, Si, S, and Fe all peak in the central region and decrease with distance along the outflow, with the exception of Ne, which maintains a flat distribution. The metal abundances indicate significant dilution outside of the starburst region. We also find estimates of the mass outflow rates, which are 2.8Myr−1in the northern outflow and 3.2Myr−1in the southern outflow. Additionally, we detect emission from charge exchange and find it makes a significant contribution (20%–42%) to the total broadband (0.5–7 keV) X-ray emission in the central and southern regions of the outflow. 
    more » « less
  2. Abstract Galaxy formation and evolution are regulated by the feedback from galactic winds. Absorption lines provide the most widely available probe of winds. However, since most data only provide information integrated along the line of sight, they do not directly constrain the radial structure of the outflows. In this paper, we present a method to directly measure the gas electron density in outflows (ne), which in turn yields estimates of outflow cloud properties (e.g., density, volume filling factor, and sizes/masses). We also estimate the distance (rn) from the starburst at which the observed densities are found. We focus on 22 local star-forming galaxies primarily from the COS Legacy Archive Spectroscopic SurveY (CLASSY). In half of them, we detect absorption lines from fine-structure excited transitions of Siii(i.e., Siii*). We determinenefrom relative column densities of Siiiand Siii*, given Siii* originates from collisional excitation by free electrons. We find that the derivednecorrelates well with the galaxy’s star formation rate per unit area. From photoionization models or assuming the outflow is in pressure equilibrium with the wind fluid, we getrn∼ 1–2r*or ∼5r*, respectively, wherer*is the starburst radius. Based on comparisons to theoretical models of multiphase outflows, nearly all of the outflows have cloud sizes large enough for the clouds to survive their interaction with the hot wind fluid. Most of these measurements are the first ever for galactic winds detected in absorption lines and, thus, will provide important constraints for future models of galactic winds. 
    more » « less
  3. Abstract We present results on the properties of extreme gas outflows in massive (M*∼ 1011M), compact, starburst (star formation rate, SFR∼ 200Myr−1) galaxies atz= 0.4–0.7 with very high star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). Using optical Keck/HIRES spectroscopy of 14 HizEA starburst galaxies, we identify outflows with maximum velocities of 820–2860 km s−1. High-resolution spectroscopy allows us to measure precise column densities and covering fractions as a function of outflow velocity and characterize the kinematics and structure of the cool gas outflow phase (T∼ 104K). We find substantial variation in the absorption profiles, which likely reflects the complex morphology of inhomogeneously distributed, clumpy gas and the intricacy of the turbulent mixing layers between the cold and hot outflow phases. There is not a straightforward correlation between the bursts in the galaxies’ star formation histories and their wind absorption line profiles, as might naively be expected for starburst-driven winds. The lack of strong Mgiiabsorption at the systemic velocity is likely an orientation effect, where the observations are down the axis of a blowout. We infer high mass outflow rates of ∼50–2200Myr−1, assuming a fiducial outflow size of 5 kpc, and mass loading factors ofη∼ 5 for most of the sample. While these values have high uncertainties, they suggest that starburst galaxies are capable of ejecting very large amounts of cool gas that will substantially impact their future evolution. 
    more » « less
  4. Abstract Quasar feedback is a key ingredient in shaping galaxy evolution. A rare population of extremely red quasars (ERQs) atz= 2−3 are often associated with high-velocity [Oiii]λ5008 outflows and may represent sites of strong feedback. In this paper, we present an X-ray study of 50 ERQs to investigate the link between the X-ray and outflow properties of these intriguing objects. Using hardness ratio analysis, we confirm that the ERQs are heavily obscured systems with gas column density reachingNH= 1023−24cm−2. We identify 20 X-ray-nondetected ERQs at high mid-infrared (MIR) luminosities ofνLν,6μm≳ 3 × 1046erg s−1. By stacking the X-ray observations, we find that the nondetected ERQs are on average underluminous in X-rays by a factor of ∼10 for their MIR luminosities. We consider such X-ray weakness to be due to both heavy gas absorption and intrinsic factors. Moreover, we find that the X-ray-weak sources also display higher-velocity outflows. One option to explain this trend is that weaker X-rays facilitate more vigorous line-driven winds, which then accelerate the [Oiii]-emitting gas to kiloparsec scales. Alternatively, super-Eddington accretion could also lead to intrinsic X-ray weakness and more powerful continuum-driven outflow. 
    more » « less
  5. Abstract We present a sample of 398 galaxies with ionized gas outflow signatures in their spectra from the Galaxy and Mass Assembly Survey Data Release 4, including 45 low-mass galaxies with stellar massesM* < 1010M. We assemble our sample by systematically searching for the presence of a second velocity component in the [O iii]λλ4959, 5007 doublet emission line in 39,612 galaxies with redshiftsz < 0.3. The host galaxies are classified using the Baldwin–Phillips–Terlevich diagram, with ~89% identified as active galactic nuclei (AGNs) and composites and 11% as star-forming (SF) galaxies. The outflows are typically faster in AGNs with a median velocity of 936 km s−1compared to 655 km s−1in the SF objects. Of particular interest are the 45 galaxies in the low-mass range, of which a third are classified as AGNs/composites. The outflows from the low-mass AGNs are also faster and more blueshifted compared to those in the low-mass SF galaxies. This indicates that black hole outflows can affect host galaxies in the low-mass range and that AGN feedback in galaxies withM* < 1010Mshould be considered in galaxy evolution models. 
    more » « less