skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring programmatic elements that foster neurodiverse children and adolescents’ participation in informal STEM learning programs: a systematic review
Abstract Informal STEM settings offer valuable opportunities for students, including neurodiverse students, to engage and participate in STEM activities. However, there is a limited information on how to best engage and include neurodiverse students in informal STEM programming. This systematic review aimed to identify the programmatic elements that facilitated the inclusion of K-12 neurodiverse STEM learners in informal STEM programs. In this systematic review, an academic and grey literature search was conducted, where the search resulted in 2632 records and 18 records were included in the systematic review. Records that met inclusion criteria were independently reviewed and assessed for quality by two reviewers using the Mixed Methods Appraisal Tool (MMAT) or a project-based MMAT. This paper describes how informal STEM programs were designed and implemented to foster the participation of neurodiverse K-12 STEM learners. A qualitative synthesis approach was used to identify the programmatic elements that fostered neurodiverse learner participation. Most of the informal STEM programming for neurodiverse youth occurred in after-school settings and with students with autism. Programmatic elements that facilitated the participation of this population in informal STEM were grouped into three categories: (1) environment/learning structure, (2) learning supports, and (3) instructional strategies and tools. Future informal STEM programming and research should expand to include the neurodiverse population in already established informal STEM programs.  more » « less
Award ID(s):
2115542
PAR ID:
10550088
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Disciplinary and Interdisciplinary Science Education Research
Volume:
6
Issue:
1
ISSN:
2662-2300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Informal learning settings are valuable environments for students to learn beyond the classroom. This article describes the preliminary findings from a systematic review that explored programmatic elements associated with science, technology, engineering, and mathematics (STEM) learning, knowledge, identity, and self-efficacy for neurodiverse youth in informal STEM learning environments. 
    more » « less
  2. Informal learning settings are valuable environments for students to learn beyond the classroom. This article describes the preliminary findings from a systematic review that explored programmatic elements associated with science, technology, engineering, and mathematics (STEM) learning, knowledge, identity, and self-efficacy for neurodiverse youth in informal STEM learning environments. 
    more » « less
  3. Abstract Background Informal learning experiences in science, technology, engineering, and math (STEM) can enhance STEM learning that occurs in formal educational settings and curricula as well as generate enthusiasm for considering STEM careers. The aim of this systematic review is to focus on the experiences of neurodiverse students in informal STEM learning. Neurodiversity is a subgroup of neurodevelopmental conditions, such as autism, attention deficit disorder, dyslexia, dyspraxia, and other neurological conditions. The neurodiversity movement regards these conditions as natural forms of human variation, as opposed to dysfunction, and recognizes that neurodiverse individuals possess many strengths relevant to STEM fields. Methods The authors will systematically search electronic databases for relevant research and evaluation articles addressing informal STEM learning for K-12 children and youth with neurodiverse conditions. Seven databases and content-relevant websites (e.g., informalscience.org) will be searched using a predetermined search strategy and retrieved articles will be screened by two members of the research team. Data synthesis will include meta-synthesis techniques, depending on the designs of the studies. Discussion The synthesis of the findings resulting from various research and evaluation designs, across the K-12 age span, and across various informal STEM learning contexts, will lead to depth and breadth of understanding of ways to improve informal STEM learning programs for neurodiverse children and youth. The identification of informal STEM learning program components and contexts shown to yield positive results will provide specific recommendations for improving inclusiveness, accessibility, and STEM learning for neurodiverse children and youth. Trial registration The current study has been registered in PROSPERO. Registration number: CRD42021278618. 
    more » « less
  4. This Gaming 4 Good (G4G) work-in-progress project aims to enhance participation and success in STEM education for individuals with disabilities (IWD) by using video game design as an educational tool to teach computational thinking (CT) and foster positive STEM identities. Recognizing the diverse challenges faced by IWD, G4G adopts a transdiagnostic approach, focusing on shared experiences rather than specific diagnoses to create an inclusive learning environment. The project takes place in informal settings, such as after-school programs and summer camps, where students participate in extended game jams to develop and design video games. Through these hands-on activities, learners engage in data practices, systems thinking, and collaborative problem-solving, making STEM learning accessible and engaging for neurodiverse populations. By continuously involving IWD, their caregivers, and subject matter experts in the co-design process, G4G ensures that the program meets diverse learning needs and is applicable in real-world settings. Ultimately, G4G seeks to empower IWD by fostering their interest and skills in STEM, thereby creating pathways for their success in future opportunities. 
    more » « less
  5. The National Science Foundation (2019) points to Black, Hispanic/Latino, American Indian, Alaskan Native, Native Hawaiian and other Pacific Island peoples as underrepresented in science, technology, engineering and math (STEM) college majors and professional pathways. This underrepresentation results from an interplay of representation and process, meaning that it in part results from STEM opportunities and programming that do not reflect the experiences of racially and ethnically diverse people, offer insight into the needs of diverse communities, nor address barriers that prevent participation (McGee 2020). One way that institutions of higher education (IHEs) and community organizations try to address inequities in STEM is through pre-college programs aimed at supporting racially and ethnically minoritized (REM) youth. These pre-college STEM programs (PCSPs) work to foster increased STEM awareness and support students in achieving academic milestones that make college pathways more viable. Out-of-school learning (OSL) and informal STEM programming have the potential to fill gaps in STEM K–12 education, as well as complement and support connections with K–12 STEM by offering REM youth opportunities to connect STEM with their lives and influence both their capabilities and dispositions toward STEM (Kitchen et al. 2018). Studies have pointed to positive connections between OSL STEM participation and outcomes such as high school graduation, sustained interest in STEM, and matriculation to university (Penuel, Clark, and Bevan 2016). PCSPs may also support IHE’s development of infrastructure to increase admissions of REM students into college STEM programs. For PCSPs to be an effective element of reducing inequities in STEM, they must successfully engage with and recruit REM youth to participate. In this article, we focus on the recruitment of REM youth into STEM OSL to better understand what is effective for REM youth and their families, as well as highlight connections between OSL and in-school STEM opportunities. Our goals in this work are to (1) identify program practices with the aim of broadening STEM educational and career pathways for REM youth and (2) support strengthened pathways between STEM in K–12 schools and IHEs. 
    more » « less