Abstract The distribution of legacy heavy metals in industrial city soils is not well documented. Therefore, fundamental details such as the ‘background’ (i.e., non-road/non-dripline) concentration of trace metals in urban soils are uncertain. While there has been a strong focus on mapping lead contamination near roads and residences, these studies are generally not placed in the context of the urban background. In this study, ‘background’ distributions of urban relevant trace metals: arsenic, cadmium, copper, lead, and zinc were mapped based on soil samples collected throughout Pittsburgh. Distinct spatial patterns were revealed: contamination is elevated in the eastern portion of the study area, driven by dominant wind patterns and historical coking activities in low-lying areas (paleochannels), areas subject to atmospheric temperature inversions that focus air contamination. The mixing analysis revealed spatial structures in contributions of industrial activities to metal soil contamination. In particular, regions enriched in cadmium relative to zinc (i.e., Zn:Cd<317) were located near historical coking operations, and areas enriched in lead relative to zinc (Pb:Zn>1) were located in areas with historical secondary lead smelters. These results suggest a comprehensive accounting of the trace metals concentrations in background soils has important implications for the assessment of exposure risk in populations residing in historically industrial areas. Relatively sparse sampling of background conditions in urban systems can indicate patterns of legacy contamination and attribute this contamination to historical sources.
more »
« less
Spring water discharge and metal enrichment in urban soils
Abstract Urban centers have inherited a unique mix of persistent contamination that impacts interactions among urban soil and groundwater systems. In particular, the potential for urban groundwater to transport contaminants from surface sources through the subsurface environment and ultimately to soils is not well understood. Studies have focused on specific ‘natural’ mechanisms driving distribution of metals in urban soils. However, very few studies have examined the accumulation of contamination in soils at groundwater discharge locations (springs) and the potential for groundwater to redistribute urban legacy contaminants far from the source. Soil transects straddling four groundwater springs in Pittsburgh, Pennsylvania were sampled to evaluate patterns resulting from contaminated groundwater discharge on urban soils. Metal concentrations were measured in pore water and compared with concentrations observed in total digestions and exchangeable extractions (acetic acid) of the soil. Across the springs Co, Cr, Ni, and V (metals often used in steel alloys) were elevated downslope, suggesting contaminated groundwater discharge enriches trace metals in these locations. These processes create unexpected biogeochemical patterns on the landscape and have the potential to create hotspots of soil metal contamination at predictable points across the urban landscape.
more »
« less
- Award ID(s):
- 2012409
- PAR ID:
- 10550099
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Communications
- Volume:
- 6
- Issue:
- 10
- ISSN:
- 2515-7620
- Format(s):
- Medium: X Size: Article No. 105023
- Size(s):
- Article No. 105023
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aging water infrastructure renewal in urban areas creates opportunities to systematically implement green infrastructure (GI) systems. However, historical soil contamination from gasoline lead additives, steel manufacturing by-products, and other historical industry raise the potential that novel GI drainage patterns and geochemical environments may mobilize these legacy pollutants to green infrastructure sites previously isolated from most hydrologic flows. Characterization of GI soil chemistries across GI type to build on previous observations in other cites/regions is fundamental to accurate assessments of these emerging management scenarios and the resultant risk of increased metal exposures in downstream environments. In particular, clarification of ecosystem services this metal sequestration may provide are vital to comprehensive assessment of green infrastructure function. During 2021, soil metal chemistry, specifically, As, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn was measured at a high spatial resolution in six Pittsburgh (Pennsylvania, United States) GI installations using a portable X-ray Fluorescence Spectrometer. Patterns of trace metal accumulation were identified in these installations and evaluated as a function of site age and GI connection to road systems. Trace metals including chromium, copper, manganese, and zinc all seem to be accumulating at roadside edges. Remobilization of historically contaminated soils also seems to be a potential mechanism for transporting legacy trace metal contamination, particularly lead, into GI systems. However, metals were not clearly accumulating in installations less connected to road inputs. These findings are consistent with literature reports of trace metal transport to GI systems and reconfirm that clarification of these processes is fundamental to effective stormwater planning and management.more » « less
-
Veach, Allison (Ed.)ABSTRACT Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ . Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.more » « less
-
In order to understand the extent to which airborne PFAS emission can impact soil and groundwater, we conducted a sampling campaign in areas of conserved forest lands near Bennington, VT/Hoosick Falls, NY. This has been home to sources of PFAS air-emissions from Teflon-coating operations for over 50 years. Since 2015, the Vermont and New York Departments of Environmental Conservation have documented ∼1200 residential wells and two municipal water systems across a 200 km 2 area contaminated with perfluorooctanoic acid (PFOA). Given the large areal extent of the plume, and the fact that much of the contaminated area lies up-gradient and across rivers from manufactures, we seek to determine if groundwater contamination could have resulted primarily from air-emission, land deposition, and subsequent leaching to infiltrating groundwater. Sampling of soils and groundwater in the Green Mountain National Forest (GMNF) downwind of factories shows that both soil and groundwater PFOA contamination extend uninterrupted from inhabited areas into conserved forest lands. Groundwater springs and seeps in the GMNF located 8 km downwind, but >300 meters vertically above factories, contain up to 100 ppt PFOA. Our results indicate that air-emitted PFAS can contaminate groundwater and soil in areas outside of those normally considered down-gradient of a source with respect to regional groundwater flow.more » « less
-
Biogeochemical properties of soils play a crucial role in soil and stream chemistry throughout a watershed. How water interacts with soils during subsurface flow can have impacts on water quality, thus, it is fundamental to understand where and how certain soil water chemical processes occur within a catchment. In this study, ~200 soil samples were evaluated throughout a small catchment in the Front Range of Colorado, USA to examine spatial and vertical patterns in major soil solutes among different landscape units: riparian areas, alluvial/colluvial fans, and steep hillslopes. Solutes were extracted from the soil samples in the laboratory and analyzed for major cation (Li, K, Mg, Br, and Ca) and anion (F, Cl, NO 2 , NO 3 , PO 4 , and SO 4 ) concentrations using ion chromatography. Concentrations of most solutes were greater in near surface soils (10 cm) than in deeper soils (100 cm) across all landscape units, except for F which increased with depth, suggestive of surface accumulation processes such as dust deposition or enrichment due to biotic cycling. Potassium had the highest variation between depths, ranging from 1.04 mg/l (100 cm) to 3.13 mg/l (10 cm) sampled from riparian landscape units. Nearly every solute was found to be enriched in riparian areas where vegetation was visibly denser, with higher mean concentrations than the hillslopes and fans, except for NO 3 which had higher concentrations in the fans. Br, NO 2 , and PO 4 concentrations were often below the detectable limit, and Li and Na were not variable between depths or landscape units. Ratioed stream water concentrations (K:Na, Ca:Mg, and NO 3 :Cl) vs. discharge relationships compared to the soil solute ratios indicated a hydraulic disconnection between the shallow soils (<100 cm) and the stream. Based on the comparisons among depths and landscape units, our findings suggest that K, Ca, F, and NO 3 solutes may serve as valuable tracers to identify subsurface flowpaths as they are distinct among landscape units and depth within this catchment. However, interflow and/or shallow groundwater flow likely have little direct connection to streamflow generation.more » « less
An official website of the United States government
