The role of the environment in the emergence and spread of antimicrobial resistance (AMR) is being increasingly recognized, raising questions about the public health risks associated with environmental AMR. Yet, little is known about pathogenicity among resistant bacteria in environmental systems. Existing studies on the association between AMR and virulence are contradictory, as fitness costs and genetic co-occurrence can be opposing influences. Using Escherichia coli isolated from surface waters in eastern North Carolina, we compared virulence gene prevalence between isolates resistant and susceptible to antibiotics. We also compared the prevalence of isolates from sub-watersheds with or without commercial hog operations (CHOs). Isolates that had previously been evaluated for phenotypic AMR were paired by matching isolates resistant to any tested antibiotic with fully susceptible isolates from the same sample date and site, forming 87 pairs. These 174 isolates were evaluated by conventional PCR for seven virulence genes (bfp, fimH, cnf-1, STa (estA), EAST-1 (astA), eae, and hlyA). One gene, fimH, was found in 93.1% of isolates. Excluding fimH, at least one virulence gene was detected in 24.7% of isolates. Significant negative associations were found between resistance to at least one antibiotic and presence of at least one virulence gene, tetracycline resistance and presence of a virulence gene, resistance and STa presence, and tetracycline resistance and STa presence. No significant associations were found between CHO presence and virulence, though some sub-significant associations merit further study. This work builds our understanding of factors controlling AMR dissemination through the environment and potential health risks.
more »
« less
Heavy Metal Pollution Impacts Soil Bacterial Community Structure and Antimicrobial Resistance at the Birmingham 35th Avenue Superfund Site
ABSTRACT Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ . Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.
more »
« less
- Award ID(s):
- 1851085
- PAR ID:
- 10402785
- Editor(s):
- Veach, Allison
- Date Published:
- Journal Name:
- Microbiology Spectrum
- ISSN:
- 2165-0497
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The widespread misuse of antibiotics has escalated antibiotic resistance into a critical global public health concern. Beyond antibiotics, metals function as antibacterial agents. Metal resistance genes (MRGs) enable bacteria to tolerate metal-based antibacterials and may also foster antibiotic resistance within bacterial communities through co-selection. Thus, predicting bacterial MRGs is vital for elucidating their involvement in antibiotic resistance and metal tolerance mechanisms. The “best hit” approach is mainly utilized to identify and annotate MRGs. This method is sensitive to cutoff values and produces a high false negative rate. Other than the best hit approach, only a few antimicrobial resistance (AMR) detection tools exist for predicting MRGs. However, these tools lack comprehensive annotation for MRGs conferring resistance to multiple metals. To address such limitations, we introduce DeepMRG, a deep learning-based multi-label classifier, to predict bacterial MRGs. Because a bacterial MRG can confer resistance to multiple metals, DeepMRG is designed as a multi-label classifier capable of predicting multiple metal labels associated with an MRG. It leverages bit score-based similarity distribution of sequences with experimentally verified MRGs. To ensure unbiased model evaluation, we employed a clustering method to partition our dataset into six subsets, five for cross-validation and one for testing, with non-homologous sequences, mitigating the impact of sequence homology. DeepMRG consistently achieved high overall F1-scores and significantly reduced false negative rates across a wide range of datasets. It can be used to predict bacterial MRGs in metagenomic or isolate assemblies. The web server of DeepMRG can be accessed athttps://deepmrg.cs.vt.edu/deepmrgand the source code is available athttps://github.com/muhit-emon/DeepMRGunder the MIT license.more » « less
-
Elkins, Christopher A. (Ed.)ABSTRACT Antibiotic-resistant bacteria and the spread of antibiotic resistance genes (ARGs) pose a serious risk to human and veterinary health. While many studies focus on the movement of live antibiotic-resistant bacteria to the environment, it is unclear whether extracellular ARGs (eARGs) from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we use eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to track the movement of eARGs to live P. stutzeri cells via natural transformation, a mechanism of horizontal gene transfer involving the genomic integration of eARGs. In sterile, antibiotic-free agricultural soil, we manipulated the eARG concentration, soil moisture, and proximity to eARGs. We found that transformation occurred in soils inoculated with just 0.25 μg of eDNA g −1 soil, indicating that even low concentrations of soil eDNA can facilitate transformation (previous estimates suggested ∼2 to 40 μg eDNA g −1 soil). When eDNA was increased to 5 μg g −1 soil, there was a 5-fold increase in the number of antibiotic-resistant P. stutzeri cells. We found that eARGs were transformed under soil moistures typical of terrestrial systems (5 to 30% gravimetric water content) but inhibited at very high soil moistures (>30%). Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish in the absence of antibiotic selection and that the soil environment plays a critical role in regulating transformation. IMPORTANCE Bacterial death can release eARGs into the environment. Agricultural soils can contain upwards of 10 9 ARGs g −1 soil, which may facilitate the movement of eARGs from dead to live bacteria through a mechanism of horizontal gene transfer called natural transformation. Here, we track the spread of eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to live antibiotic-susceptible P. stutzeri cells in sterile agricultural soil. Transformation increased with the abundance of eARGs and occurred in soils ranging from 5 to 40% gravimetric soil moisture but was lowest in wet soils (>30%). Transformants appeared in soil after 24 h and persisted for up to 15 days even when eDNA concentrations were only a fraction of those found in field soils. Overall, our results show that natural transformation allows eARGs to spread and persist in antibiotic-free soils and that the biological activity of eDNA after bacterial death makes environmental eARGs a public health concern.more » « less
-
null (Ed.)As we are on the cusp of the “post-antibiotic” era due to rapid spread of drug resistant bacteria, there is an urgent need for new antimicrobials that are not susceptible to bacterial resistance mechanisms. In this review, we will discuss the recent development of “polymer therapeutics” with antimicrobial activity. Learning from host-defence peptides, we propose the biomimetic design of synthetic polymers to target bacterial cell membranes, which act by compromising the membrane integrity. The discussion is extended to the future challenges and opportunities of antimicrobial polymers for clinical applications.more » « less
-
null (Ed.)Antimicrobial resistance is a world-wide health care crisis. New antimicrobials must both exhibit potency and thwart the ability of bacteria to develop resistance to them. We report the use of synthetic ionophores as a new approach to developing non-resistant antimicrobials and adjuvants. Most studies involving amphiphilic antimicrobials have focused on either developing synthetic amphiphiles that show ion transport, or developing non-cytotoxic analogs of such peptidic amphiphiles as colistin. We have rationally designed, prepared, and evaluated crown ether-based synthetic ionophores (‘hydraphiles’) that show selective ion transport through bilayer membranes and are toxic to bacteria. We report here that hydraphiles exhibit a broad range of antimicrobial properties and that they function as adjuvants in concert with FDA-approved antibiotics against multi-drug resistant (MDR) bacteria. Studies described herein demonstrate that benzyl C 14 hydraphile (BC 14 H) shows high efficacy as an antimicrobial. BC 14 H, at sub-MIC concentrations, forms aggregates of ∼200 nm that interact with the surface of bacteria. Surface-active BC 14 H then localizes in the bacterial membranes, which increases their permeability. As a result, antibiotic influx into the bacterial cytosol increases in the presence of BC n Hs. Efflux pump inhibition and accumulation of substrate was also observed, likely due to disruption of the cation gradient. As a result, BC 14 H recovers the activity of norfloxacin by 128-fold against resistant Staphylococcus aureus . BC 14 H shows extremely low resistance development and is less cytotoxic than colistin. Overall, synthetic ionophores represent a new scaffold for developing efficient and non-resistant antimicrobial-adjuvants.more » « less
An official website of the United States government

