Abstract The accumulation of organic micropollutants (OMP) in aquatic systems is a major societal problem that can be addressed by approaches including nanofiltration, flocculation, reverse osmosis and adsorptive methods using insoluble materials (e.g. activated carbon, MOFs, nanocomposites). More recently, polymeric versions of supramolecular hosts (e.g. cyclodextrins, calixarenes, pillararenes) have been investigated as OMP sequestrants. Herein, we report our study of the use of water insoluble dimethylcatechol walled acyclic cucurbit[n]uril (CB[n]) hosts as solid state sequestrants for a panel of five OMPs. A series of hosts (H1–H4) were synthesized by reaction of glycoluril oligomer (monomer–tetramer) with 3,6‐dimethylcatechol and fully characterized by spectroscopic means and x‐ray crystallography. The solid hosts sequester OMPs from water with removal efficiencies exceeding 90 % in some cases. The removal efficiencies of the new hosts parallel the known molecular recognition properties of analogous water soluble acyclic CB[n]. OMP uptake by solid host occurs rapidly (≈120 seconds). Head‐to‐head comparison with CB[6] in batch‐mode separation and DARCO activated carbon in flow‐through separation mode show that tetramer derived host (H4)performs very well under identical conditions. The work establishes insoluble acyclic CB[n]‐type receptors as a promising new platform for OMP sequestration.
more »
« less
Structural Deformations in Cucurbit[n]urils: Analysis, Host‐Guest Dependence, and Automated Ellipticity Measurements Using ElliptiCB[n]
Abstract Cucurbit[n]urils (CB[n]s) are cyclic macrocycles with rich host‐guest chemistry. In many cases, guest binding in CB[n]s results in host structural deformations. Unfortunately, measuring such deformations remains a major challenge, with only a handful of manual estimations reported in the literature. To address this challenge, we have developed the public program ElliptiCB[n], which is available on GitHub, that provides a robust and automated method for measuring the elliptical deformations in CB[n] hosts. We outline the development and validation of this approach, apply ElliptiCB[n] to measure the ellipticity of the 1113 available CB[n] structures from the Cambridge Structural Database (CSD), and directly investigate the structural deformations of CB[5], CB[6], CB[7], CB[8], and CB[10] hosts. We also report the general landscape of accessible CB[n] elliptical deformations and compare ellipticity distributions across CB[n] hosts and host‐guest complexes. We found that in almost all cases guest binding significantly impacts the distribution of host ellipticity distributions and that these distributions are dissimilar across host‐guest complexes of differently sized CB[n]s. We anticipate that this work will provide a useful approach for understanding of the flexibility of CB[n] hosts and will also enable future measurement and standardization of ellipticity measurements of CB[n]s.
more »
« less
- Award ID(s):
- 2004150
- PAR ID:
- 10550114
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 30
- Issue:
- 57
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Series of lanthanide‐containing metallic coordination complexes are frequently presented as structurally analogous, due to the similar chemical and coordinative properties of the lanthanides. In the case of chiral (LnIII[15‐MCN(L‐pheHA)‐5])3+metallacrowns (MCs), which are well established supramolecular hosts, the formation of dimers templated by a dicarboxylate guest (muconate) in solution of neutral pH is herein shown to have a unique dependence on the identity of the MC's central lanthanide. Calorimetric data and nuclear magnetic resonance diffusion studies demonstrate that MCs containing larger or smaller lanthanides as the central metal only form monomeric host‐guest complexes whereas analogues with intermediate lanthanides (for example, Eu, Gd, Dy) participate in formation of dimeric host‐guest‐host compartments. The driving force for the dimerization event across the series is thought to be a competition between formation of highly stable MCs (larger lanthanides) and optimally linked bridging guests (smaller lanthanides).more » « less
-
We report the synthesis of quaternary (di)cationic triamantane derivatives G1 and G3 by the permethylation of the corresponding primary ammonium ions G2 and G4. The complexation behaviors of G1–G4 toward CB[7] and CB[8] were examined by 1 H NMR spectroscopy, which reveals that CB[8] is capable of fully encapsulating G1–G4 whereas CB[7] forms inclusion complexes with G1, G2, and G4 but cannot fully encapsulate the central hydrophobic core of the bis-quaternary ammonium ion G3. The geometries of the CB[ n ]-guest complexes were determined by analyzing the complexation induced changes in chemical shifts and were further confirmed by molecular modelling using the Conformer–Rotamer Ensemble Sampling Tool (CREST) based on the GFN methods. Finally, the complexation thermodynamics were determined by a combination of 1 H NMR competitive experiments, direct isothermal titration calorimetry (ITC) measurements, and competitive ITC titrations using a tight binding ternary complex as a competitor.more » « less
-
We apply the Alchemical Transfer Method (ATM) and a bespoke fixed partial charge force field to the SAMPL9 bCD host-guest binding free energy prediction challenge that comprises a combination of complexes formed between five phenothiazine guests and two cyclodextrin hosts. Multiple chemical forms, competing binding poses, and computational modeling challenges pose significant obstacles to obtaining reliable computational predictions for these systems. The phenothiazine guests exist in solution as racemic mixtures of enantiomers related by nitrogen inversions that bind the hosts in various binding poses, each requiring an individual free energy analysis. Due to the large size of the guests and the conformational reorganization of the hosts, which prevent a direct absolute binding free energy route, binding free energies are obtained by a series of absolute and relative binding alchemical steps for each chemical species in each binding pose. Metadynamics-accelerated conformational sampling was found to be necessary to address the poor convergence of some numerical estimates affected by conformational trapping. Despite these challenges, our blinded predictions quantitatively reproduced the experimental affinities for the beta-cyclodextrin host and, to a lesser extent, those with a methylated derivative. The work illustrates the challenges of obtaining reliable free energy data in in-silico drug design for even seemingly simple systems and introduces some of the technologies available to tackle them.more » « less
-
null (Ed.)Macrocyclic hosts have long been used for guest encapsulation, and recently a new application has emerged; employment as supramolecular elements for capture and recovery of gold through host/guest co-precipitation. The guests are square-planar tetrahaloaurate anions, practically important gold complexes with a capacity to engage in non-covalent interactions such as hydrogen bonding and Au–π interactions. The successful macrocyclic hosts for co-precipitation include cyclodextrins, cucurbiturils, and cyclophanes, with recent expansion of the structural scope to include acyclic amides.more » « less
An official website of the United States government
