skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A dual mechanisms of control account of age differences in working memory.
Age-related differences in working memory (WM) can be large, but the exact sources are unclear. We hypothesized that young adults outperform older adults on WM tasks because they use controlled attention processes to prioritize the maintenance of relevant information in WM in a proactive mode, whereas older adults tend to rely on the strength of familiarity signals to make memory decisions in a reactive mode. We used a WM task that cued participants to prioritize one item over others and presented repeated lure probes that cause errors when one is engaged in a reactive mode. Results showed that, relative to young adults with full attention available to use proactive control during the delays, older adults with full attention (and young adults with divided attention) during the delays had exaggerated error rates to repeated lure probes compared to control probes. When the amount of proactive interference was increased (by repeating stimuli across trials), older adults were able to engage in proactive control, and this eliminated their exaggerated error rate (while young adults with divided attention could not). These results provide evidence for a dual mechanisms of control account of age differences in WM.  more » « less
Award ID(s):
1848440
PAR ID:
10550276
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Psychological Association
Date Published:
Journal Name:
Psychology and Aging
Volume:
39
Issue:
4
ISSN:
0882-7974
Page Range / eLocation ID:
436 to 455
Subject(s) / Keyword(s):
working memory, attention, proactive, reactive, aging
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cohen Kadosh, Roi (Ed.)
    Sustained attention (SA) and working memory (WM) are critical processes, but the brain networks supporting these abilities in development are unknown. We characterized the functional brain architecture of SA and WM in 9- to 11-year-old children and adults. First, we found that adult network predictors of SA generalized to predict individual differences and fluctuations in SA in youth. A WM model predicted WM performance both across and within children—and captured individual differences in later recognition memory—but underperformed in youth relative to adults. We next characterized functional connections differentially related to SA and WM in youth compared to adults. Results revealed 2 network configurations: a dominant architecture predicting performance in both age groups and a secondary architecture, more prominent for WM than SA, predicting performance in each age group differently. Thus, functional connectivity (FC) predicts SA and WM in youth, with networks predicting WM performance differing more between youths and adults than those predicting SA. 
    more » « less
  2. Sustained attention (SA) and working memory (WM) are critical processes, but the brain networks supporting these abilities in development are unknown. We characterized the functional brain architecture of SA and WM in 9–11-year-old children and adults. First, we found that adult network predictors of SA generalized to predict individual differences and fluctuations in SA in youth. A WM model predicted WM performance both across and within children—and captured individual differences in later recognition memory—but underperformed in youth relative to adults. We next characterized functional connections differentially related to SA and WM in youth compared to adults. Results revealed two network configurations: a dominant architecture predicting performance in both age groups and a secondary architecture, more prominent for WM than SA, predicting performance in each age group differently. Thus, functional connectivity predicts SA and WM in youth, with networks predicting WM performance differing more between youths and adults than those predicting SA. 
    more » « less
  3. Abstract Age-related reductions in neural selectivity have been linked to cognitive decline. We examined whether age differences in the strength of retrieval-related cortical reinstatement could be explained by analogous differences in neural selectivity at encoding, and whether reinstatement was associated with memory performance in an age-dependent or an age-independent manner. Young and older adults underwent fMRI as they encoded words paired with images of faces or scenes. During a subsequent scanned memory test participants judged whether test words were studied or unstudied and, for words judged studied, also made a source memory judgment about the associated image category. Using multi-voxel pattern similarity analyses, we identified robust evidence for reduced scene reinstatement in older relative to younger adults. This decline was however largely explained by age differences in neural differentiation at encoding; moreover, a similar relationship between neural selectivity at encoding and retrieval was evident in young participants. The results suggest that, regardless of age, the selectivity with which events are neurally processed at the time of encoding can determine the strength of retrieval-related cortical reinstatement. 
    more » « less
  4. Abstract The efficacy of fake news corrections in improving memory and belief accuracy may depend on how often adults see false information before it is corrected. Two experiments tested the competing predictions that repeating fake news before corrections will either impair or improve memory and belief accuracy. These experiments also examined whether fake news exposure effects would differ for younger and older adults due to age-related differences in the recollection of contextual details. Younger and older adults read real and fake news headlines that appeared once or thrice. Next, they identified fake news corrections among real news headlines. Later, recognition and cued recall tests assessed memory for real news, fake news, if corrections occurred, and beliefs in retrieved details. Repeating fake news increased detection and remembering of corrections, correct real news retrieval, and erroneous fake news retrieval. No age differences emerged for detection of corrections, but younger adults remembered corrections better than older adults. At test, correct fake news retrieval for earlier-detected corrections was associated with better real news retrieval. This benefit did not differ between age groups in recognition but was greater for younger than older adults in cued recall. When detected corrections were not remembered at test, repeated fake news increased memory errors. Overall, both age groups believed correctly retrieved real news more than erroneously retrieved fake news to a similar degree. These findings suggest that fake news repetition effects on subsequent memory accuracy depended on age differences in recollection-based retrieval of fake news and that it was corrected. 
    more » « less
  5. The ability to use past experience to effectively guide decision-making declines in older adulthood. Such declines have been theorized to emerge from either impairments of striatal reinforcement learning systems (RL) or impairments of recurrent networks in prefrontal and parietal cortex that support working memory (WM). Distinguishing between these hypotheses has been challenging because either RL or WM could be used to facilitate successful decision-making in typical laboratory tasks. Here we investigated the neurocomputational correlates of age-related decision-making deficits using an RL-WM task to disentangle these mechanisms, a computational model to quantify them, and magnetic resonance spectroscopy to link them to their molecular bases. Our results reveal that task performance is worse in older age, in a manner best explained by working memory deficits, as might be expected if cortical recurrent networks were unable to sustain persistent activity across multiple trials. Consistent with this, we show that older adults had lower levels of prefrontal glutamate, the excitatory neurotransmitter thought to support persistent activity, compared to younger adults. Individuals with the lowest prefrontal glutamate levels displayed the greatest impairments in working memory after controlling for other anatomical and metabolic factors. Together, our results suggest that lower levels of prefrontal glutamate may contribute to failures of working memory systems and impaired decision-making in older adulthood. 
    more » « less