skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning (PAN-DL 2023)
Message from the Organizers Welcome to the second edition of the Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning (Pan-DL)! Our workshop is being organized in a hybrid format on December 6, 2023, in conjunction with the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP). In the past year, the natural language processing (NLP) field (and the world at large!) has been hit by the large language model (LLM) "tsunami." This happened for the right reasons: LLMs perform extremely well in a multitude of NLP tasks, often with minimal training and, perhaps for the first time, have made NLP technology extremely approachable to non-expert users. However, LLMs are not perfect: they are not really explainable, they are not pliable, i.e., they cannot be easily modified to correct any errors observed, and they are not efficient due to the overhead of decoding. In contrast, rule-based methods are more transparent to subject matter experts; they are amenable to having a human in the loop through intervention, manipulation and incorporation of domain knowledge; and further the resulting systems tend to be lightweight and fast. This workshop focuses on all aspects of rule-based approaches, including their application, representation, and interpretability, as well as their strengths and weaknesses relative to state-of-the-art machine learning approaches. Considering the large number of potential directions in this neuro-symbolic space, we emphasized inclusivity in our workshop. We received 19 submissions and accepted 10 for oral presentation. This resulted in an overall acceptance rate of 52%. Our workshop also includes 6 presentations of papers that were accepted in Findings of EMNLP. In addition to the oral presentations of the accepted papers, our workshop includes a keynote talk by Yunyao Li, who has made many important contributions to the field of symbolic approaches for natural language processing. Further, the workshop contains a panel that will discuss the merits and limitations of rules in the new LLM era. The panelists will be academics with expertise in both neural- and rulebased methods, industry experts that employ these methods for commercial products, and subject matter experts that have used rule-based methods for domain-specific applications. We thank Yunyao Li and the panelists for their important contribution to our workshop! Finally, we are thankful to the members of the program committee for their insightful reviews! We are confident that all submissions have benefited from their expert feedback. Their contribution was a key factor for accepting a diverse and high-quality list of papers, which we hope will make the first edition of the Pan-DL workshop a success, and will motivate many future editions. Pan-DL 2023 Organizers December 6, 2023  more » « less
Award ID(s):
2006583
PAR ID:
10550337
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Message from the Organizers Welcome to the first edition of the Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning (Pan-DL)! Our workshop is being organized online on October 17, 2022, in conjunction with the 29th International Conference on Computational Linguistics (COLING). We all know that deep-learning methods have dominated the field of natural language processing in the past decade. However, these approaches usually rely on the availability of high-quality and high- quantity data annotation. Furthermore, the learned models are difficult to interpret and incur substantial technical debt. As a result, these approaches tend to exclude users that lack the necessary machine learning background. In contrast, rule-based methods are easier to deploy and adapt; they support human examination of intermediate representations and reasoning steps; they are more transparent to subject- matter experts; they are amenable to having a human in the loop through intervention, manipulation and incorporation of domain knowledge; and further the resulting systems tend to be lightweight and fast. This workshop focuses on all aspects of rule-based approaches, including their application, representation, and interpretability, as well as their strengths and weaknesses relative to state-of-the-art machine learning approaches. Considering the large number of potential directions in this neuro-symbolic space, we emphasized inclusivity in our workshop. We received 13 papers and accepted 10 for oral presentation. This resulted in an overall acceptance rate of 77%. In addition of the oral presentations of the accepted papers, our workshop includes a keynote talk by Ellen Riloff, who has made crucial contributions to the field of natural language processing, many of which are at the intersection of rule- and neural-based methods. Further, the workshop contains a panel that will discuss the merits and limitations of rules in our neural era. The panelists will be academics with expertise in both neural- and rule-based methods, industry experts that employ these methods for commercial products, government officials in charge of AI funding, organizers of natural language processing evaluations, and subject matter experts that have used rule-based methods for domain-specific applications. We thank Ellen Riloff and the panelists for their important contribution to our workshop! Finally, we are thankful to the members of the program committee for their insightful reviews! We are confident that all submissions have benefited from their expert feedback. Their contribution was a key factor for accepting a diverse and high-quality list of papers, which we hope will make the first edition of the Pan-DL workshop a success, and will motivate many future editions. Pan-DL 2022 Organizers October 2022 
    more » « less
  2. The explosion of conference paper submissions in AI and related fields has underscored the need to improve many aspects of the peer review process, especially the matching of papers and reviewers. Recent work argues that the key to improve this matching is to modify aspects of the bidding phase itself, to ensure that the set of bids over papers is balanced, and in particular to avoid orphan papers, i.e., those papers that receive no bids. In an attempt to understand and mitigate this problem, we have developed a flexible bidding platform to test adaptations to the bidding process. Using this platform, we performed a field experiment during the bidding phase of a medium-size international workshop that compared two bidding methods. We further examined via controlled experiments on Amazon Mechanical Turk various factors that affect bidding, in particular the order in which papers are presented [11, 17]; and information on paper demand [33]. Our results suggest that several simple adaptations, that can be added to any existing platform, may significantly reduce the skew in bids, thereby improving the allocation for both reviewers and conference organizers. 
    more » « less
  3. It is common to evaluate a set of items by soliciting people to rate them. For example, universities ask students to rate the teaching quality of their instructors, and conference organizers ask authors of submissions to evaluate the quality of the reviews. However, in these applications, students often give a higher rating to a course if they receive higher grades in a course, and authors often give a higher rating to the reviews if their papers are accepted to the conference. In this work, we call these external factors the" outcome" experienced by people, and consider the problem of mitigating these outcome-induced biases in the given ratings when some information about the outcome is available. We formulate the information about the outcome as a known partial ordering on the bias. We propose a debiasing method by solving a regularized optimization problem under this ordering constraint, and also provide a carefully designed cross-validation method that adaptively chooses the appropriate amount of regularization. We provide theoretical guarantees on the performance of our algorithm, as well as experimental evaluations. 
    more » « less
  4. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    In feedback generation for logical errors in programming assignments, large language model (LLM)-based methods have shown great promise. These methods ask the LLM to generate feedback given the problem statement and a student¿½fs (buggy) submission. There are several issues with these types of methods. First, the generated feedback messages are often too direct in revealing the error in the submission and thus diminish valuable opportunities for the student to learn. Second, they do not consider the student¿½fs learning context, i.e., their previous submissions, current knowledge, etc. Third, they are not layered since existing methods use a single, shared prompt for all student submissions. In this paper, we explore using LLMs to generate a ``feedback-ladder'', i.e., multiple levels of feedback for the same problem-submission pair. We evaluate the quality of the generated feedback-ladder via a user study with students, educators, and researchers. We have observed diminishing effectiveness for higher-level feedback and higher-scoring submissions overall in the study. In practice, our method enables teachers to select an appropriate level of feedback to show to a student based on their personal learning context, or in a progressive manner to go more detailed if a higher-level feedback fails to correct the student¿½fs error. 
    more » « less
  5. On August 9-10, 2023, the Thomas J. O’Keefe Institute for Sustainable Supply of Strategic Minerals at Missouri University of Science and Technology (Missouri S&T) hosted the third annual workshop on ‘Resilient Supply of Critical Minerals’. The workshop was funded by the National Science Foundation (NSF) and was attended by 218 participants. 128 participants attended in-person in the Havener Center on the Missouri S&T campus in Rolla, Missouri, USA. Another 90 participants attended online via Zoom. Fourteen participants (including nine students) received travel support through the NSF grant to attend the conference in Rolla. Additionally, the online participation fee was waived for another six students and early career researchers to attend the workshop virtually. Out of the 218 participants, 190 stated their sectors of employment during registration showing that 87 participants were from academia (32 students), 62 from the private sector and 41 from government agencies. Four topical sessions were covered: A. The Critical Mineral Potential of the USA: Evaluation of existing, and exploration for new resources. B. Mineral Processing and Recycling: Maximizing critical mineral recovery from existing production streams. C. Critical Mineral Policies: Toward effective and responsible governance. D. Resource Sustainability: Ethical and environmentally sustainable supply of critical minerals. Each topical session was composed of two keynote lectures and complemented by oral and poster presentations by the workshop participants. Additionally, a panel discussion with panelists from academia, the private sector and government agencies was held that discussed ‘How to grow the American critical minerals workforce’. The 2023 workshop was followed by a post-workshop field trip to the lead-zinc mining operations of the Doe Run Company in southeast Missouri that was attended by 18 workshop participants from academia (n=10; including 4 students), the private sector (n=4), and government institutions (n=4). Discussions during the workshop led to the following suggestions to increase the domestic supply of critical minerals: (i) Research to better understand the geologic critical mineral potential of the USA, including primary reserves/resources, historic mine wastes, and mineral exploration potential. (ii) Development of novel extraction techniques targeted at the recovery of critical minerals as co-products from existing production streams, mine waste materials, and recyclables. (iii) Faster and more transparent permitting processes for mining and mineral processing operations. (iv) A more environmentally sustainable and ethical approach to mining and mineral processing. (v) Development of a highly skilled critical minerals workforce. This workshop report provides a detailed summary of the workshop discussions and describes a way forward for this workshop series for 2024 and beyond. 
    more » « less