skip to main content


Search for: All records

Award ID contains: 2006583

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While fully supervised relation classification (RC) models perform well on large-scale datasets, their performance drops drastically in low-resource settings. As generating annotated examples are expensive, recent zero-shot methods have been proposed that reformulate RC into other NLP tasks for which supervision exists such as textual entailment. However, these methods rely on templates that are manually created which is costly and requires domain expertise. In this paper, we present a novel strategy for template generation for relation classification, which is based on adapting Harris’ distributional similarity principle to templates encoded using contextualized representations. Further, we perform empirical evaluation of different strategies for combining the automatically acquired templates with manual templates. The experimental results on TACRED show that our approach not only performs better than the zero-shot RC methods that only use manual templates, but also that it achieves state-of-the-art performance for zero-shot TACRED at 64.3 F1 score. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. We introduce a method that self trains (or bootstraps) neural relation and explanation classifiers. Our work expands the supervised approach of (Tang and Surdeanu, 2022), which jointly trains a relation classifier with an explanation classifier that identifies context words important for the relation at hand, to semi- supervised scenarios. In particular, our approach iteratively converts the explainable mod- els’ outputs to rules and applies them to unlabeled text to produce new annotations. Our evaluation on the TACRED dataset shows that our method outperforms the rule-based model we started from by 15 F1 points, outperforms traditional self-training that relies just on the relation classifier by 5 F1 points, and performs comparatively with the prompt-based approach of Sainz et al. (2021) (without requiring an additional natural language inference component). 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract We propose an explainable approach for relation extraction that mitigates the tension between generalization and explainability by jointly training for the two goals. Our approach uses a multi-task learning architecture, which jointly trains a classifier for relation extraction, and a sequence model that labels words in the context of the relations that explain the decisions of the relation classifier. We also convert the model outputs to rules to bring global explanations to this approach. This sequence model is trained using a hybrid strategy: supervised, when supervision from pre-existing patterns is available, and semi-supervised otherwise. In the latter situation, we treat the sequence model’s labels as latent variables, and learn the best assignment that maximizes the performance of the relation classifier. We evaluate the proposed approach on the two datasets and show that the sequence model provides labels that serve as accurate explanations for the relation classifier’s decisions, and, importantly, that the joint training generally improves the performance of the relation classifier. We also evaluate the performance of the generated rules and show that the new rules are a great add-on to the manual rules and bring the rule-based system much closer to the neural models. 
    more » « less
  4. In low resource settings, data augmentation strategies are commonly leveraged to improve performance. Numerous approaches have attempted document-level augmentation (e.g., text classification), but few studies have explored token-level augmentation. Performed naively, data augmentation can produce semantically incongruent and ungrammatical examples. In this work, we compare simple masked language model replacement and an augmentation method using constituency tree mutations to improve the performance of named entity recognition in low-resource settings with the aim of preserving linguistic cohesion of the augmented sentences. 
    more » « less
  5. We propose a neural-based approach for rule synthesis designed to help bridge the gap between the interpretability, precision and maintainability exhibited by rule-based information extraction systems with the scalability and convenience of statistical information extraction systems. This is achieved by avoiding placing the burden of learning another specialized language on domain experts and instead asking them to provide a small set of examples in the form of highlighted spans of text. We introduce a transformer-based architecture that drives a rule synthesis system that leverages a self-supervised approach for pre-training a large-scale language model complemented by an analysis of different loss functions and aggregation mechanisms for variable length sequences of user-annotated spans of text. The results are encouraging and point to different desirable properties, such as speed and quality, depending on the choice of loss and aggregation method. 
    more » « less
  6. We propose a system that assists a user in constructing transparent information extraction models, consisting of patterns (or rules) written in a declarative language, through program synthesis. Users of our system can specify their requirements through the use of examples, which are collected with a search interface. The rule-synthesis system proposes rule candidates and the results of applying them on a textual corpus; the user has the option to accept the candidate, request another option, or adjust the examples provided to the system. Through an interactive evaluation, we show that our approach generates high-precision rules even in a 1-shot setting. On a second evaluation on a widely-used relation extraction dataset (TACRED), our method generates rules that outperform considerably manually written patterns. Our code, demo, and documentation is available at https://clulab.github.io/odinsynth/. 
    more » « less
  7. While deep learning approaches to information extraction have had many successes, they can be difficult to augment or maintain as needs shift. Rule-based methods, on the other hand, can be more easily modified. However, crafting rules requires expertise in linguistics and the domain of interest, making it infeasible for most users. Here we attempt to combine the advantages of these two directions while mitigating their drawbacks. We adapt recent advances from the adjacent field of program synthesis to information extraction, synthesizing rules from provided examples. We use a transformer-based architecture to guide an enumerative search, and show that this reduces the number of steps that need to be explored before a rule is found. Further, we show that our synthesized rules achieve state-of-the-art performance on the 1-shot scenario of a task that focuses on few-shot learning for relation classification, and competitive performance in the 5-shot scenario. 
    more » « less
  8. With their Discovery of Inference Rules from Text (DIRT) algorithm, Lin and Pantel (2001) made a seminal contribution to the field of rule acquisition from text, by adapting the distributional hypothesis of Harris (1954) to patterns that model binary relations such as X treat Y, where patterns are implemented as syntactic dependency paths. DIRT’s relevance is renewed in today’s neural era given the recent focus on interpretability in the field of natural language processing. We propose a novel take on the DIRT algorithm, where we implement the distributional hypothesis using the contextualized embeddings provided by BERT, a transformer-network-based language model (Vaswani et al., 2017; Devlin et al., 2018). In particular, we change the similarity measure between pairs of slots (i.e., the set of words matched by a pattern) from the original formula that relies on lexical items to a formula computed using contextualized embeddings. We empirically demonstrate that this new similarity method yields a better implementation of the distributional hypothesis, and this, in turn, yields patterns that outperform the original algorithm in the question answering-based evaluation proposed by Lin and Pantel (2001). 
    more » « less
  9. We propose an explainable approach for relation extraction that mitigates the tension between generalization and explainability by jointly training for the two goals. Our approach uses a multi-task learning architecture, which jointly trains a classifier for relation extraction, and a sequence model that labels words in the context of the relation that explain the decisions of the relation classifier. We also convert the model outputs to rules to bring global explanations to this approach. This sequence model is trained using a hybrid strategy: supervised, when supervision from pre-existing patterns is available, and semi-supervised otherwise. In the latter situation, we treat the sequence model’s labels as latent variables, and learn the best assignment that maximizes the performance of the relation classifier. We evaluate the proposed approach on the two datasets and show that the sequence model provides labels that serve as accurate explanations for the relation classifier’s decisions, and, importantly, that the joint training generally improves the performance of the relation classifier. We also evaluate the performance of the generated rules and show that the new rules are great add-on to the manual rules and bring the rule-based system much closer to the neural models. 
    more » « less