skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Viral- and fungal-mediated behavioral manipulation of hosts: summit disease
AbstractSummit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce “summiting” in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics. Key points•Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal.•Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms.•Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways.  more » « less
Award ID(s):
2418026
PAR ID:
10550388
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Applied Microbiology and Biotechnology
Volume:
108
Issue:
1
ISSN:
0175-7598
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Garsin, Danielle A. (Ed.)
    ABSTRACT Transmission is a crucial step in all pathogen life cycles. As such, certain species have evolved complex traits that increase their chances to find and invade new hosts. Fungal species that hijack insect behaviors are evident examples. Many of these “zombie-making” entomopathogens cause their hosts to exhibit heightened activity, seek out elevated positions, and display body postures that promote spore dispersal, all with specific circadian timing. Answering how fungal entomopathogens manipulate their hosts will increase our understanding of molecular aspects underlying fungus-insect interactions, pathogen-host coevolution, and the regulation of animal behavior. It may also lead to the discovery of novel bioactive compounds, given that the fungi involved have traditionally been understudied. This minireview summarizes and discusses recent work on zombie-making fungi of the orders Hypocreales and Entomophthorales that has resulted in hypotheses regarding the mechanisms that drive fungal manipulation of insect behavior. We discuss mechanical processes, host chemical signaling pathways, and fungal secreted effectors proposed to be involved in establishing pathogen-adaptive behaviors. Additionally, we touch on effectors’ possible modes of action and how the convergent evolution of host manipulation could have given rise to the many parallels in observed behaviors across fungus-insect systems and beyond. However, the hypothesized mechanisms of behavior manipulation have yet to be proven. We, therefore, also suggest avenues of research that would move the field toward a more quantitative future. 
    more » « less
  2. Tortosa, Pablo (Ed.)
    ABSTRACT Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus calledPandora neoaphidisin the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance againstPandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show thatPandoracan acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCEEntomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales—an important but understudied group of fungi. 
    more » « less
  3. Abstract Although the type‐I interferon (IFN‐I) response is considered vertebrate‐specific, recent findings about the Intracellular Pathogen Response (IPR) in nematodeCaenorhabditis elegansindicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN‐I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN‐I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens inC. elegansand other simple host organisms. Here we highlight similar roles played by RIG‐I‐like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN‐I response, as well as the similar consequences of these defense programs on organismal development. 
    more » « less
  4. Ding, Xia (Ed.)
    ABSTRACT The skin microbiome is an essential line of host defense against pathogens, yet our understanding of microbial communities and how they change when hosts become infected is limited. We investigated skin microbial composition in three North American bat species (Myotis lucifugus,Eptesicus fuscus, andPerimyotis subflavus) that have been impacted by the infectious disease, white-nose syndrome, caused by an invasive fungal pathogen,Pseudogymnoascus destructans. We compared bacterial and fungal composition from 154 skin swab samples and 70 environmental samples using a targeted 16S rRNA and internal transcribed spacer amplicon approach. We found that forM. lucifugus, a species that experiences high mortality from white-nose syndrome, bacterial microbiome diversity was dramatically lower whenP. destructanswas present. Key bacterial families—including those potentially involved in pathogen defense—significantly differed in abundance in bats infected withP. destructanscompared to uninfected bats. However, skin bacterial diversity was not lower inE. fuscusorP. subflavuswhenP. destructanswas present despite populations of the latter species declining sharply from white-nose syndrome. The fungal species present on bats substantially overlapped with the fungal taxa present in the environment at the site where the bat was sampled, but fungal community composition was unaffected by the presence ofP. destructansfor any of the three bat species. This species-specific alteration in bat skin bacterial microbiomes after pathogen invasion may suggest a mechanism for the severity of white-nose syndrome inM. lucifugusbut not for other bat species impacted by the disease. IMPORTANCEInherent complexities in the composition of microbiomes can often preclude investigations of microbe-associated diseases. Instead of single organisms being associated with disease, community characteristics may be more relevant. Longitudinal microbiome studies of the same individual bats as pathogens arrive and infect a population are the ideal experiment but remain logistically challenging; therefore, investigations like our approach that are able to correlate invasive pathogens to alterations within a microbiome may be the next best alternative. The results of this study potentially suggest that microbiome-host interactions may determine the likelihood of infection. However, the contrasting relationship between Pd and the bacterial microbiomes ofMyotis lucifugusandPerimyotis subflavusindicate that we are just beginning to understand how the bat microbiome interacts with a fungal invader such as Pd. 
    more » « less
  5. Summary Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray‐Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non‐pathogenic fungi, and an oomycete pathogen. We observed efficient double‐stranded RNA (dsRNA) uptake in the fungal plant pathogensBotrytis cinerea,Sclerotinia sclerotiorum,Rhizoctonia solani,Aspergillus nigerandVerticillium dahliae, but no uptake inColletotrichum gloeosporioides, and weak uptake in a beneficial fungus,Trichoderma virens. For the oomycete plant pathogen,Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence‐related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen’s RNA uptake efficiency. 
    more » « less