Abstract Circulating tumor cell clusters (CTCCs) are rare cellular events found in the blood stream of metastatic tumor patients. Despite their scarcity, they represent an increased risk for metastasis. Label-free detection methods of these events remain primarily limited to in vitro microfluidic platforms. Here, we expand on the use of confocal backscatter and fluorescence flow cytometry (BSFC) for label-free detection of CTCCs in whole blood using machine learning for peak detection/classification. BSFC uses a custom-built flow cytometer with three excitation wavelengths (405 nm, 488 nm, and 633 nm) and five detectors to detect CTCCs in whole blood based on corresponding scattering and fluorescence signals. In this study, detection of CTCC-associated GFP fluorescence is used as the ground truth to assess the accuracy of endogenous back-scattered light-based CTCC detection in whole blood. Using a machine learning model for peak detection/classification, we demonstrated that the combined use of backscattered signals at the three wavelengths enable detection of ~ 93% of all CTCCs larger than two cells with a purity of > 82% and an overall accuracy of > 95%. The high level of performance established through BSFC and machine learning demonstrates the potential for label-free detection and monitoring of CTCCs in whole blood. Further developments of label-free BSFC to enhance throughput could lead to important applications in the isolation of CTCCs in whole blood with minimal disruption and ultimately their detection in vivo. 
                        more » 
                        « less   
                    
                            
                            Engineering a PbrR-Based Biosensor for Cell-Free Detection of Lead at the Legal Limit
                        
                    
    
            Industrialization and failing infrastructure have led to a growing number of irreversible health conditions resulting from chronic lead exposure. While state-of- the-art analytical chemistry methods provide accurate and sensitive detection of lead, they are too slow, expensive, and centralized to be accessible to many. Cell-free biosensors based on allosteric transcription factors (aTFs) can address the need for accessible, on-demand lead detection at the point of use. However, known aTFs, such as PbrR, are unable to detect lead at concentrations regulated by the Environmental Protection Agency (24−72 nM). Here, we develop a rapid cell-free platform for engineering aTF biosensors with improved sensitivity, selectivity, and dynamic range characteristics. We apply this platform to engineer PbrR mutants for a shift in limit of detection from 10 μM to 50 nM lead and demonstrate use of PbrR as a cell-free biosensor. We envision that our workflow could be applied to engineer any aTF. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10550471
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Synthetic Biology
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2161-5063
- Page Range / eLocation ID:
- 3003 to 3012
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)A recent development in portable biosensors allows rapid, accurate, and on-site detection of biomarkers, which helps to prevent disease spread by the control of sources. Less invasive sample collection is necessary to use portable biosensors in remote environments for accurate on-site diagnostics and testing. For non- or minimally invasive sampling, easily accessible body fluids, such as saliva, sweat, blood, or urine, have been utilized. It is also imperative to find accurate biomarkers to provide better clinical intervention and treatment at the onset of disease. At the same time, these reliable biomarkers can be utilized to monitor the progress of the disease. In this review, we summarize the most recent development of portable biosensors to detect various biomarkers accurately. In addition, we discuss ongoing issues and limitations of the existing systems and methods. Lastly, we present the key requirements of portable biosensors and discuss ideas for functional enhancements.more » « less
- 
            Engineered probiotic bacteria have been proposed as a next-generation strategy for noninvasively detecting biomarkers in the gastrointestinal tract and interrogating the gut-brain axis. A major challenge impeding the implementation of this strategy has been the difficulty to engineer the necessary whole-cell biosensors. Creation of transcription factor-based biosensors in a clinically-relevant strain often requires significant tuning of the genetic parts and gene expression to achieve the dynamic range and sensitivity required. Here, we propose an approach to efficiently engineer transcription-factor based metabolite biosensors that uses a design prototyping construct to quickly assay the gene expression design space and identify an optimal genetic design. We demonstrate this approach using the probiotic bacterium Escherichia coli Nissle 1917 (EcN) and two neuroactive gut metabolites: the neurotransmitter gamma-aminobutyric acid (GABA) and the short-chain fatty acid propionate. The EcN propionate sensor, utilizing the PrpR transcriptional activator from E. coli , has a large 59-fold dynamic range and >500-fold increased sensitivity that matches biologically-relevant concentrations . Our EcN GABA biosensor uses the GabR transcriptional repressor from Bacillus subtilis and a synthetic GabR-regulated promoter created in this study. This work reports the first known synthetic microbial whole-cell biosensor for GABA, which has an observed 138-fold activation in EcN at biologically-relevant concentrations. Using this rapid design prototyping approach, we engineer highly functional biosensors for specified in vivo metabolite concentrations that achieve a large dynamic range and high output promoter activity upon activation. This strategy may be broadly useful for accelerating the engineering of metabolite biosensors for living diagnostics and therapeutics.more » « less
- 
            Alkali antimonide semiconductor photocathodes provide a promising platform for the generation of high-brightness electron beams, which are necessary for the development of cutting-edge probes, including x-ray free electron lasers and ultrafast electron diffraction. Nonetheless, to harness the intrinsic brightness limits in these compounds, extrinsic degrading factors, including surface roughness and contamination, must be overcome. By exploring the growth of CsxSb thin films monitored by in situ electron diffraction, the conditions to reproducibly synthesize atomically smooth films of CsSb on 3C–SiC (100) and graphene-coated TiO2 (110) substrates are identified, and detailed structural, morphological, and electronic characterization is presented. These films combine high quantum efficiency in the visible (up to 1.2% at 400 nm), an easily accessible photoemission threshold of 566 nm, low surface roughness (down to 600 pm on a 1 μm scale), and a robustness against oxidation up to 15 times greater than Cs3Sb. These properties lead us to suggest that CsSb has the potential to operate as an alternative to Cs3Sb in electron source applications where the demands of the vacuum environment might otherwise preclude the use of traditional alkali antimonides.more » « less
- 
            Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule. Sensor response can be tuned by varying membrane composition, and encapsulation protects from sensor degradation, facilitating detection in real-world samples. These sensors can detect fluoride using two types of genetically encoded outputs, enabling detection of fluoride at the Environmental Protection Agency maximum contaminant level of 0.2 millimolars. This work demonstrates the capacity of bilayer membranes to confer tunable permeability to encapsulated, genetically encoded sensors and establishes the feasibility of artificial cell platforms to detect environmentally relevant small molecules.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    