skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PersA-FL : personalized asynchronous federated learning
Award ID(s):
2213568
PAR ID:
10550494
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
Optimization Methods and Software
ISSN:
1055-6788
Page Range / eLocation ID:
1 to 38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions. 
    more » « less
  2. Abstract We introduceMahakala, aPython-based, modular, radiative ray-tracing code for curved spacetimes. We employ Google’sJAXframework for accelerated automatic differentiation, which can efficiently compute Christoffel symbols directly from the metric, allowing the user to easily and quickly simulate photon trajectories through non-Kerr spacetimes.JAXalso enablesMahakalato run in parallel on both CPUs and GPUs.Mahakalanatively uses the Cartesian Kerr–Schild coordinate system, which avoids numerical issues caused by the pole in spherical coordinate systems. We demonstrateMahakala’s capabilities by simulating 1.3 mm wavelength images (the wavelength of Event Horizon Telescope observations) of general relativistic magnetohydrodynamic simulations of low-accretion rate supermassive black holes. The modular nature ofMahakalaallows us to quantitatively explore how different regions of the flow influence different image features. We show that most of the emission seen in 1.3 mm images originates close to the black hole and peaks near the photon orbit. We also quantify the relative contribution of the disk, forward jet, and counterjet to 1.3 mm images. 
    more » « less
  3. ABSTRACT We develop a method to compute synthetic kilonova light curves that combine numerical relativity simulations of neutron star mergers and the SNEC radiation–hydrodynamics code. We describe our implementation of initial and boundary conditions, r-process heating, and opacities for kilonova simulations. We validate our approach by carefully checking that energy conservation is satisfied and by comparing the SNEC results with those of two semi-analytic light-curve models. We apply our code to the calculation of colour light curves for three binaries having different mass ratios (equal and unequal mass) and different merger outcome (short-lived and long-lived remnants). We study the sensitivity of our results to hydrodynamic effects, nuclear physics uncertainties in the heating rates, and duration of the merger simulations. We find that hydrodynamics effects are typically negligible and that homologous expansion is a good approximation in most cases. However, pressure forces can amplify the impact of uncertainties in the radioactive heating rates. We also study the impact of shocks possibly launched into the outflows by a relativistic jet. None of our models match AT2017gfo, the kilonova in GW170817. This points to possible deficiencies in our merger simulations and kilonova models that neglect non-LTE effects and possible additional energy injection from the merger remnant and to the need to go beyond the assumption of spherical symmetry adopted in this work. 
    more » « less