Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Quantifying the structure and dynamics of species interactions in ecological communities is fundamental to studying ecology and evolution. While there are numerous approaches to analysing ecological networks, there is not yet an approach that can (1) quantify dissimilarity in the global structure of ecological networks that range from identical species and interaction composition to zero shared species or interactions and (2) map species between such networks while incorporating additional ecological information, such as species traits or abundances.To address these challenges, we introduce the use of optimal transport distances to quantify ecological network dissimilarity and functionally equivalent species between networks. Specifically, we describe the Gromov–Wasserstein (GW) and Fused Gromov–Wasserstein (FGW) distances. We apply these optimal transport methods to synthetic and empirical data, using mammal food webs throughout sub‐Saharan Africa for illustration. We showcase the application of GW and FGW distances to identify the most functionally similar species between food webs, incorporate additional trait information into network comparisons and quantify food web dissimilarity among geographic regions.Our results demonstrate that GW and FGW distances can effectively differentiate ecological networks based on their topological structure while identifying functionally equivalent species, even when networks have different species. The FGW distance further improves node mapping for basal species by incorporating node‐level traits. We show that these methods allow for a more nuanced understanding of the topological similarities in food web networks among geographic regions compared to an alternative measure of network dissimilarity based on species identities.Optimal transport distances offer a new approach for quantifying functional equivalence between networks and a measure of network dissimilarity suitable for a broader range of uses than existing approaches. OT methods can be harnessed to analyse ecological networks at large spatial scales and compare networks among ecosystems, realms or taxa. Optimal transport‐based distances, therefore, provide a powerful tool for analysing ecological networks with great potential to advance our understanding of ecological community structure and dynamics in a changing world.more » « lessFree, publicly-accessible full text available August 13, 2026
- 
            Abstract AimTropical regions harbour over half of the world's mammals and birds, but how their communities have assembled over evolutionary timescales remains unclear. To compare eco‐evolutionary assembly processes between tropical mammals and birds, we tested how hypotheses concerning niche conservatism, environmental stability, environmental heterogeneity and time‐for‐speciation relate to tropical vertebrate community phylogenetic and functional structure. LocationTropical rainforests worldwide. Time periodPresent. Major taxa studiedGround‐dwelling and ground‐visiting mammals and birds. MethodsWe used in situ observations of species identified from systematic camera trap sampling as realized communities from 15 protected tropical rainforests in four tropical regions worldwide. We quantified standardized phylogenetic and functional structure for each community and estimated the multi‐trait phylogenetic signal (PS) in ecological strategies for the four regional species pools of mammals and birds. Using linear regression models, we test three non‐mutually exclusive hypotheses by comparing the relative importance of colonization time, palaeo‐environmental changes in temperature and land cover since 3.3 Mya, contemporary seasonality in temperature and productivity and environmental heterogeneity for predicting community phylogenetic and functional structure. ResultsPhylogenetic and functional structure showed non‐significant yet varying tendencies towards clustering or dispersion in all communities. Mammals had stronger multi‐trait PS in ecological strategies than birds (mean PS: mammal = 0.62, bird = 0.43). Distinct dominant processes were identified for mammal and bird communities. For mammals, colonization time and elevation range significantly predicted phylogenetic clustering and functional dispersion tendencies respectively. For birds, elevation range and contemporary temperature seasonality significantly predicted phylogenetic and functional clustering tendencies, respectively, while habitat diversity significantly predicted functional dispersion tendencies. Main conclusionsOur results reveal different eco‐evolutionary assembly processes structuring contemporary tropical mammal and bird communities over evolutionary timescales that have shaped tropical diversity. Our study identified marked differences among taxonomic groups in the relative importance of historical colonization and sensitivity to environmental change.more » « less
- 
            Abstract Changes in land use and climate change threaten global biodiversity and ecosystems, calling for the urgent development of effective conservation strategies. Recognizing landscape heterogeneity, which refers to the variation in natural features within an area, is crucial for these strategies. While remote sensing images quantify landscape heterogeneity, they might fail to detect ecological patterns in moderately disturbed areas, particularly at minor spatial scales. This is partly because satellite imagery may not effectively capture undergrowth conditions due to its resolution constraints. In contrast, soundscape analysis, which studies environmental acoustic signals, emerges as a novel tool for understanding ecological patterns, providing reliable information on habitat conditions and landscape heterogeneity in complex environments across diverse scales and serving as a complement to remote sensing methods.We propose an unsupervised approach using passive acoustic monitoring data and network inference methods to analyse acoustic heterogeneity patterns based on biophony composition. This method uses sonotypes, unique acoustic entities characterized by their specific time‐frequency spaces, to establish the acoustic structure of a site through sonotype occurrences, focusing on general biophony rather than specific species and providing information on the acoustic footprint of a site. From a sonotype composition matrix, we use the Graphical Lasso method, a sparse Gaussian graphical model, to identify acoustic similarities across sites, map ecological complexity relationships through the nodes (sites) and edges (similarities), and transform acoustic data into a graphical representation of ecological interactions and landscape acoustic diversity.We implemented the proposed method across 17 sites within an oil palm plantation in Santander, Colombia. The resulting inferred graphs visualize the acoustic similarities among sites, reflecting the biophony achieved by characterizing the landscape through its acoustic structures. Correlating our findings with ecological metrics like the Bray–Curtis dissimilarity index and satellite imagery indices reveals significant insights into landscape heterogeneity.This unsupervised approach offers a new perspective on understanding ecological and biological interactions and advances soundscape analysis. The soundscape decomposition into sonotypes underscores the method's advantage, offering the possibility to associate sonotypes with species and identify their contribution to the similarity proposed by the graph.more » « less
- 
            Abstract Understanding variation in food web structure over large spatial scales is an emerging research agenda in food web ecology. The density of predator–prey links in a food web (i.e., connectance) is a key measure of network complexity that describes the mean proportional dietary breadth of species within a food web. Connectance is a critical component of food web robustness to species loss: food webs with lower connectance have been shown to be more susceptible to secondary extinctions. Identifying geographic variation in food web connectance and its drivers may provide insight into community robustness to species loss. We investigated the food web connectance of ground-dwelling tropical forest mammal communities in multiple biogeographic regions to test for differences among regions in food web connectance and to test three potential drivers: primary productivity, contemporary anthropogenic pressure, and variation in mammal body mass distributions reflective of historical extinctions. Mammal communities from fifteen protected forests throughout the Neo-, Afro-, and Asian tropics were identified from systematic camera trap arrays. Predator–prey interaction data were collected from published literature, and we calculated connectance for each community as the number of observed predator–prey links relative to the number of possible predator–prey links. We used generalized linear models to test for differences among regions and to identify the site level characteristics that best predicted connectance. We found that mammal food web connectance varied significantly among continents and that body size range was the only significant predictor. More possible predator–prey links were observed in communities with smaller ranges in body size and therefore sites with smaller body size ranges had higher mean proportional dietary breadth. Specifically, mammal communities in the Neotropics and in Madagascar had significantly higher connectance than mammal communities in Africa. This geographic variation in contemporary mammalian food web structure may be the product of historical extinctions in the Late Quaternary, which led to greater losses of large-bodied species in the Neotropics and Madagascar thus contributing to higher average proportional dietary breadth among the remaining smaller bodied species in these regions.more » « less
- 
            Abstract Many animal–environment interactions are mediated by the physical forms of the environment, especially in tropical forests, where habitats are structurally complex and highly diverse. Higher structural complexity, measured as habitat surface area, may provide increased resource availability for animals, leading to higher animal diversity. Greater habitat surface area supports increased animal diversity in other systems, such as coral reefs and forest canopies, but it is uncertain how this relationship translates to communities of highly mobile, terrestrial mammal species inhabiting forest floors. We tested the relative importance of forest floor habitat structure, encompassing vegetation and topographic structure, in determining species occupancy and functional diversity of medium to large mammals using data from a tropical forest in the Udzungwa Mountains of Tanzania. We related species occupancies and diversity obtained from a multispecies occupancy model with ground‐level habitat structure measurements obtained from a novel head‐mounted active remote sensing device, the Microsoft HoloLens. We found that habitat surface area was a significant predictor of mean species occupancy and had a significant positive relationship with functional dispersion. The positive relationships indicate that surface area of tropical forest floors may play an important role in promoting mammal occupancy and functional diversity at the microhabitat scale. In particular, habitat surface area had higher mean effects on occupancy for carnivorous and social species. These results support a habitat surface area–diversity relationship on tropical forest floors for mammals.more » « less
- 
            Free, publicly-accessible full text available March 31, 2026
- 
            Loreau, Michel (Ed.)Tropical forests hold most of Earth’s biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats.more » « lessFree, publicly-accessible full text available February 13, 2026
- 
            Changes in lunar illumination alter the balance of risks and opportunities for animals, influencing activity patterns and species interactions. We examined if and how terrestrial mammals respond to the lunar cycle in some of the darkest places: the floors of tropical forests. We analysed long-term camera trapping data on 86 mammal species from 17 protected forests on three continents. Conservative categorization of activity during the night revealed pronounced avoidance of moonlight (lunar phobia) in 12 species, compared with pronounced attraction to moonlight (lunar philia) in only three species. However, half of all species in our study responded to lunar phases, either changing how nocturnal they were, altering their overall level of activity, or both. Avoidance of full moon was more common, exhibited by 30% of all species compared with 20% of species that exhibited attraction. Nocturnal species, especially rodents, were over-represented among species that avoided full moon. Artiodactyla were more prominent among species attracted to full moon. Our findings indicate that lunar phases influence animal behaviour even beneath the forest canopy. Such impacts may be exacerbated in degraded and fragmented forests. Our study offers a baseline representing relatively intact and well-protected contexts together with an intuitive approach for detecting activity shifts in response to environmental change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
