skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of pyrene orientation on the electronic properties and stability of graphene ribbons
We report a novel synthetic route to a series of fused acene derivatives, in which linear extension of the fully conjugated core proves to be an efficient method to tune optoelectronic properties.  more » « less
Award ID(s):
1956431
PAR ID:
10550497
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
12
Issue:
37
ISSN:
2050-7526
Page Range / eLocation ID:
14816 to 14822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rapid advances in the Internet‐of‐Things (IoT) domain have led to the development of several useful and interesting devices that have enhanced the quality of home living and industrial automation. The vulnerabilities in the IoT devices have rendered them susceptible to compromise and forgery. The problem of device authentication, that is, the question of whether a device's identity is what it claims to be, is still an open problem. Device fingerprinting seems to be a promising authentication mechanism. Device fingerprinting profiles a device based on information available about the device and generate a robust, verifiable and unique identity for the device. Existing approaches for device fingerprinting may not be feasible or cost‐effective for the IoT domain due to the resource constraints and heterogeneity of the IoT devices. Due to resource and cost constraints, behavioral fingerprinting provides promising directions for fingerprinting IoT devices. Behavioral fingerprinting allows security researchers to understand the behavioral profile of a device and to establish some guidelines regarding the device operations. In this article, we discuss existing approaches for behavioral fingerprinting of devices in general and evaluate their applicability for IoT devices. Furthermore, we discuss potential approaches for fingerprinting IoT devices and give an overview of some of the preliminary attempts to fingerprint IoT devices. We conclude by highlighting the future research directions for fingerprinting in the IoT domain. This article is categorized under:Application Areas > Science and TechnologyApplication Areas > InternetTechnologies > Machine LearningApplication Areas > Industry Specific Applications 
    more » « less
  2. Consider an eigenvector of the adjacency matrix of aG(n,p) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonleading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other. 
    more » « less
  3. PurposeThe paper aims to determine the rational homotopy type of the total space of projectivized bundles over complex projective spaces using Sullivan minimal models, providing insights into the algebraic structure of these spaces. Design/methodology/approachThe paper utilises techniques from Sullivan’s theory of minimal models to analyse the differential graded algebraic structure of projectivized bundles. It employs algebraic methods to compute the Sullivan minimal model of P ( E ) and establish relationships with the base space. FindingsThe paper determines the rational homotopy type of projectivized bundles over complex projective spaces. Of great interest is how the Chern classes of the fibre space and base space, play a critical role in determining the Sullivan model ofP(E). We also provide the homogeneous space ofP(E)whenn = 2. Finally, we prove the formality ofP(E)over a homogeneous space of equal rank. Research limitations/implicationsLimitations may include the complexity of computing minimal models for higher-dimensional bundles. Practical implicationsUnderstanding the rational homotopy type of projectivized bundles facilitates computations in algebraic topology and differential geometry, potentially aiding in applications such as topological data analysis and geometric modelling. Social implicationsWhile the direct social impact may be indirect, advancements in algebraic topology contribute to broader mathematical knowledge, which can underpin developments in science, engineering, and technology with societal benefits. Originality/valueThe paper’s originality lies in its application of Sullivan minimal models to determine the rational homotopy type of projectivized bundles over complex projective spaces, offering valuable insights into the algebraic structure of these spaces and their associated complex vector bundles. 
    more » « less
  4. Abstract BackgroundPressure-sensitive adhesives (PSAs) are integral to various industrial applications, yet a significant gap remains in accurately assessing their impact properties under dynamic conditions. This limitation hampers the optimization of PSAs for specific uses where impact resistance is critical. ObjectiveThis study aims to develop an experimental method to evaluate the impact properties of PSAs, providing a reliable and reproducible technique to assess their performance. MethodWe designed an experimental setup to simulate real-world impact conditions, incorporating high-speed cameras and an image analysis algorithm to capture the adhesive's behavior under sudden loads. The method's novelty lies in its ability to quantify maximum failure load and adhesion failure mechanisms in the dynamic loading of PSAs. ResultsThe experimental results reveal critical insights into the impact resistance of various PSA formulations, highlighting significant differences in energy dissipation and failure patterns. ConclusionThese findings offer new data not previously available in the literature, enabling a more precise evaluation of PSA performance. The developed method provides a robust framework for assessing the impact properties of PSAs, offering valuable guidance for the design and selection of adhesives in applications requiring enhanced impact resistance. This work bridges the gap between quasi-static testing and realistic dynamic performance, contributing to the advancement of PSA technology. 
    more » « less
  5. Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au. Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs. Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model. Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density. Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees. 
    more » « less