skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stable isotope composition of dew measured from 2014 to 2018 in Namibia, France, and the United States
As a supplementary or sometimes the only water source in dry regions, dew plays a critical role in the survival of organisms in such environments. The new hydrological tracer 17O-excess, with almost sole dependence on relative humidity, provides a new way to distinguish the evaporation processes and reconstruct the paleoclimate. Up to now, there is no daily dew isotope record on δ2H, δ18O, δ17O, d-excess, and 17O-excess.To fill this gap, here we collected daily dew (n=114) between July 2014 and April 2018 from three distinct climatic regions (i.e., Gobabeb-Namib Research Institute in the central Namib Desert with desert climate, Nice in France with Mediterranean climate, and Indianapolis in the central United States with humid continental climate).The isotopic composition (δ2H, δ18O, and δ17O) of dew was simultaneously analyzed using a Triple Water Vapor Isotope Analyzer (T-WVIA) based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) technique, and then d-excess and 17O-excess were calculated. The latitude, longitude, and elevation as well as three meteorological factors including temperature, relative humidity (RH), and vapour-pressure deficit (VPD) of the three collection sites were also provided here.This report presents daily dew isotope dataset under three different climatic regions. It is useful for researchers to use it as a data reference when studying global dew dynamics and dew formation mechanisms.  more » « less
Award ID(s):
1554894
PAR ID:
10550504
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
PANGAEA
Date Published:
Subject(s) / Keyword(s):
Event label Site LATITUDE LONGITUDE ELEVATION DATE/TIME δ Deuterium δ18O δ17O Deuterium excess Oxygen-17 excess Temperature, air Humidity, relative Vapour pressure deficit Triple water vapor Isotope analyzer (T-WVIA) based on off-axis integrated cavity output spectroscopy (OA-ICOS) Calculated
Format(s):
Medium: X Size: 1020 data points Other: text/tab-separated-values
Size(s):
1020 data points
Location:
(East Bound Longitude:15.04; North Bound Latitude:43.74; South Bound Latitude:-23.55; West Bound Longitude:-86.27)
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Stable isotopes of hydrogen and oxygen (δ2H, δ18O and δ17O) serve as powerful tracers in hydrological investigations. To our knowledge, daily precipitation isotope record especially 17O-excess is rare in the mid-latitudes. To fill such knowledge gap, daily precipitation samples (n = 446) were collected from June 2014 to May 2018 in Indianapolis, Indiana, U.S. A Triple Water Vapor Isotope Analyzer (T-WVIA) based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) technique was used to concurrently measure precipitation isotopic variations (δ2H, δ18O and δ17O). Meanwhile, 17O-excess and d-excess as second-order isotopic variables were calculated to provide additional information on precipitation formation and transport mechanisms. This study presents a four-year daily precipitation isotope dataset for mid-latitudes, and makes it available to researchers around the world who may use it as a reference for site comparisons and for global hydrological modeling validation. 
    more » « less
  2. Abstract. Paleoclimate reconstructions of the Early Eocene provide important data constraints on the climate and hydrologic cycle under extreme warm conditions. Available terrestrial water isotope records have been primarily interpreted to signal an enhanced hydrologic cycle in the Early Eocene associated with large-scale warming induced by high atmospheric CO2. However, orbital-scale variations in these isotope records have been difficult to quantify and largely overlooked, even though orbitally driven changes in solar irradiance can impact temperature and the hydrologic cycle. In this study, we fill this gap using water isotope–climate simulations to investigate the orbital sensitivity of Earth's hydrologic cycle under different CO2 background states. We analyze the relative difference between climatic changes resulting from CO2 and orbital changes and find that the seasonal climate responses to orbital changes are larger than CO2-driven changes in several regions. Using terrestrial δ18O and δ2H records from the Paleocene–Eocene Thermal Maximum (PETM), we compare our modeled isotopic seasonal range to fossil evidence and find approximate agreement between empirical and simulated isotopic compositions. The limitations surrounding the equilibrated snapshot simulations of this transient event and empirical data include timing and time interval discrepancies between model and data, the preservation state of the proxy, analytical uncertainty, the relationship between δ18O or δ2H and environmental context, and vegetation uncertainties within the simulations. In spite of the limitations, this study illustrates the utility of fully coupled, isotope-enabled climate models when comparing climatic changes and interpreting proxy records in times of extreme warmth. 
    more » « less
  3. Triple oxygen isotope (δ17O and δ18O) values of high- and low-temperature altered oceanic crust and products of basalt alteration experiments were measured to better constrain ocean isotope compositions in deep time. The data define an array of δ18O and Δ′17O (Δ′17O=δ′17O – λRL × δ′18O + γ) values from mantle values toward 1‰ and –0.01‰, respectively, with a λ of ~0.523. The altered oceanic crust data were used to construct a model for estimating δ18O-Δ′17O values of the ancient oceans if the continental weathering flux (FCW) and/or hydrothermal oceanic crust alteration flux (FHT) changed through time. A maximum lowering of 7‰ and 4‰, respectively, is achieved in the most extreme cases. The δ18O value of the ocean cannot be raised by more than 1.1‰. Eclogites from the Roberts Victor kimberlite (South Africa), with a protolith age of 3.1 Ga, have δ18O-Δ′17O values that precisely overlap with those of the modern altered oceanic crust, suggesting that the Archean oceans had similar isotope values as today. Published triple isotope data for Archean cherts show that all samples have been altered to some degree and suggest an Archean ocean surface temperature of ~70–100 °C. An ocean as light as –2‰ is still consistent with our eclogite data and reduce our temperature estimates by 10 °C. 
    more » « less
  4. null (Ed.)
    The Plio-Pleistocene El Laco iron oxide-apatite (IOA) orebodies in northern Chile are some of the most enigmatic mineral deposits on Earth, interpreted to have formed as lava flows or by hydrothermal replacement, two radically different processes. Field observations provide some support for both processes, but ultimately fail to explain all observations. Previously proposed genetic models based on observations and study of outcrop samples include (1) magnetite crystallization from an erupting immiscible Fe- and P-rich (Si-poor) melt and (2) metasomatic replacement of andesitic lava flows by a hypogene hydrothermal fluid. A more recent investigation of outcrop and drill core samples at El Laco generated data that were used to develop a new genetic model that invokes shallow emplacement and surface venting of a magnetite-bearing magmatic-hydrothermal fluid suspension. This fluid, with rheological properties similar to basaltic lava, would have been mobilized by decompression- induced collapse of the volcanic edifice. In this study, we report oxygen, including 17O, hydrogen, and iron stable isotope ratios in magnetite and bulk iron oxide (magnetite with minor secondary hematite and minor goethite) from five of seven orebodies around the El Laco volcano, excluding San Vicente Bajo and the minor Laquito deposits. Calculated values of δ18O, Δ17O, δD, and δ56Fe fingerprint the source of the ore-forming fluid(s): Δ17Osample = δ17Osample – δ18Osample * 0.5305. Magnetite and bulk iron oxide (magnetite variably altered to goethite and hematite) from Laco Sur, Cristales Grandes, and San Vicente Alto yield δ18O values that range from 4.3 to 4.5‰ (n = 5), 3.0 to 3.9‰ (n = 5), and –8.5 to –0.5‰ (n = 5), respectively. Magnetite samples from Rodados Negros are the least altered samples and were also analyzed for 17O as well as conventional 16O and 18O, yielding calculated δ18O values that range from 2.6 to 3.8‰ (n = 9) and Δ17O values that range from –0.13 to –0.07‰ (n = 5). Bulk iron oxide from Laco Norte yielded δ18O values that range from –10.2 to +4.5‰ (avg = 0.8‰, n = 18). The δ2H values of magnetite and bulk iron oxide from all five orebodies range from –192.8 to –79.9‰ (n = 28); hydrogen is present in fluid inclusions in magnetite and iron oxide, and in minor goethite. Values of δ56Fe for magnetite and bulk iron oxide from all five orebodies range from 0.04 to 0.70‰ (avg = 0.29‰, σ = 0.15‰, n = 26). The iron and oxygen isotope data are consistent with a silicate magma source for iron and oxygen in magnetite from all sampled El Laco orebodies. Oxygen (δ18O Δ +4.4 to –10.2‰) and hydrogen (δ 2H ≃ –79.9 to –192.8‰) stable isotope data for bulk iron oxide samples that contain minor goethite from Laco Norte and San Vicente Alto reveal that magnetite has been variably altered to meteoric values, consistent with goethite in equilibrium with local δ18O and δ2H meteoric values of ≃ –15.4 and –211‰, respectively. The H2O contents of iron oxide samples from Laco Norte and San Vicente Alto systematically increase with increasing abundance of goethite and decreasing values of δ18O and δ2H. The values of δ2H (≃ –88 to –140‰) and δ18O (3.0–4.5‰) for magnetite samples from Cristales Grandes, Laco Sur, and Rodados Negros are consistent with growth of magnetite from a degassing silicate melt and/or a boiling magmatic-hydrothermal fluid; the latter is also consistent with δ18O values for quartz, and salinities and homogenization temperatures for fluid inclusions trapped in apatite and clinopyroxene coeval with magnetite. The sum of the data unequivocally fingerprint a silicate magma as the source of the ore fluids responsible for mineralization at El Laco and are consistent with a model that explains mineralization as the synergistic result of common magmatic and magmatic-hydrothermal processes during the evolution of a caldera-related explosive volcanic system. 
    more » « less
  5. none (Ed.)
    Abstract The South American monsoon is central to the continent’s water and energy cycles, however, the relationships between the monsoon, regional water balance, and global climate change is poorly understood. Sediment records at Lake Junín (11°S, 76°W) provide an opportunity to explore these connections over the last 650 ka. Here, we focus on two interglacials, the Holocene (11.7–0 ka) and MIS 15 (621–563 ka), when sediment proxies suggest rapid regional hydroclimate fluctuations occurred. Clumped isotope distributions of lake carbonates reveal that interglacial water temperatures were similar to present, though analytical limitations preclude detecting the small temperature differences expected in the tropics (<2 °C). Combining the reconstructed water temperatures with carbonate oxygen (δ18O) and triple oxygen (Δ′17O) isotope values, we reconstruct precipitation δ18O values and lake water Δ′17O values. Precipitation δ18O values, a proxy of monsoon strength, range from -18.6 to -12.3 ‰ with lower values reflecting a stronger monsoon. Lake water Δ′17O values are -14 to 43 per meg and indicate the extent of lake water evaporation; lower values reflect a higher proportion of evaporation to inputs (i.e., more negative P-E). The precipitation δ18O and lake water Δ′17O values from both interglacials vary with the pacing of local summertime insolation, which follows an orbital pacing. These data document the close connection between Andean water balance, the South American monsoon, and global climate. Further, we analyze the relationship between precipitation δ18O and insolation, and we find that the relationship is consistent among interglacials, suggesting a similar response of the monsoon to orbital forcings over time. In contrast, while lake water Δ′17O and insolation are also correlated during both interglacials, water balance was overall more positive during MIS 15 than the Holocene. This suggests that either other global forcings or local basin dynamics can also contribute to water balance at Lake Junín. Together, these data provide new evidence of the connections between global climate, monsoon strength, and regional water balance. 
    more » « less