skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hemodynamic evaluation of biomaterial-based surgery for Tetralogy of Fallot using a biorobotic heart, in silico, and ovine models
Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency. A multimodal platform to quantitatively evaluate the effect of shape, size, and material on clinical outcomes could optimize monocusp design. This study introduces a benchtop soft biorobotic heart model, a computational fluid model of the RVOT, and a monocusp valve made from an entirely biological cell-assembled extracellular matrix (CAM) to tackle the multifaceted issue of monocusp failure. The hydrodynamic and mechanical performance of RVOT repair strategies was assessed in biorobotic and computational platforms. The monocusp valve design was validated in vivo in ovine models through echocardiography, cardiac magnetic resonance, and catheterization. These models supported assessment of surgical feasibility, handling, suturability, and hemodynamic and mechanical monocusp capabilities. The CAM-based monocusp offered a competent pulmonary valve with regurgitation of 4.6 ± 0.9% and a transvalvular pressure gradient of 4.3 ± 1.4 millimeters of mercury after 7 days of implantation in sheep. The biorobotic heart model, in silico analysis, and in vivo RVOT modeling allowed iteration in monocusp design not now feasible in a clinical environment and will support future surgical testing of biomaterials for complex congenital heart malformations.  more » « less
Award ID(s):
1847541
PAR ID:
10550530
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science Translational Medicine
Volume:
16
Issue:
755
ISSN:
1946-6234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundCongenital heart defects affect approximately 1% of births in the United States and Europe, with >1 million children in the United States living with congenital heart defects. Many experience abnormalities in the right ventricular outflow tract, often necessitating surgical intervention early in life. However, the initial repairs typically are temporary solutions as many patients will eventually need pulmonary valve replacement to address pulmonary valve regurgitation and prevent right ventricle failure. Addressing progressive pulmonary valve regurgitation, ideally in patients weighing 8 to 10 kg, is critical to prevent right ventricle dysfunction. Transcatheter pulmonary valve replacement currently treats patients weighing at least 20 kg. Unfortunately, smaller children must wait for valve replacement and risk right ventricular dilation. MethodsTo address this challenge, we have developed the IRIS Valve, a growth‐accommodating transcatheter pulmonary heart valve inspired by origami targeting implantation in at least 8 kg children. The valve stent underwent finite element analysis with validation by fracture testing. Using a 12‐Fr transcatheter system, the IRIS valve was implanted into 8 to 17 kg Yucatan mini pigs for 6 months. ResultsBenchtop fracture testing and finite element analysis confirmed the stent's ability to be crimped to a 3‐mm diameter for loading into a 12‐Fr transcatheter system and expanded to 20 mm without fracture. Animal studies successfully demonstrated excellent integration within the pulmonary valve annulus, intact valve integrity, and favorable tissue response. ConclusionsThe IRIS Valve offers a promising solution for earlier treatment of heart valve disease in pediatric patients with congenital heart defects, potentially improving outcomes in this vulnerable population. 
    more » « less
  2. Abstract Timely and accurate referral of end-stage heart failure patients for advanced therapies, including heart transplants and mechanical circulatory support, plays an important role in improving patient outcomes and saving costs. However, the decision-making process is complex, nuanced, and time-consuming, requiring cardiologists with specialized expertise and training in heart failure and transplantation. In this study, we propose two logistic tensor regression-based models to predict patients with heart failure warranting evaluation for advanced heart failure therapies using irregularly spaced sequential electronic health records at the population and individual levels. The clinical features were collected at the previous visit and the predictions were made at the very beginning of the subsequent visit. Patient-wise ten-fold cross-validation experiments were performed. Standard LTR achieved an average F1 score of 0.708, AUC of 0.903, and AUPRC of 0.836. Personalized LTR obtained an F1 score of 0.670, an AUC of 0.869 and an AUPRC of 0.839. The two models not only outperformed all other machine learning models to which they were compared but also improved the performance and robustness of the other models via weight transfer. The AUPRC scores of support vector machine, random forest, and Naive Bayes are improved by 8.87%, 7.24%, and 11.38%, respectively. The two models can evaluate the importance of clinical features associated with advanced therapy referral. The five most important medical codes, including chronic kidney disease, hypotension, pulmonary heart disease, mitral regurgitation, and atherosclerotic heart disease, were reviewed and validated with literature and by heart failure cardiologists. Our proposed models effectively utilize EHRs for potential advanced therapies necessity in heart failure patients while explaining the importance of comorbidities and other clinical events. The information learned from trained model training could offer further insight into risk factors contributing to the progression of heart failure at both the population and individual levels. 
    more » « less
  3. Abstract The increasing recognition of the right ventricle (RV) necessitates the development of RV-focused interventions, devices and testbeds. In this study, we developed a soft robotic model of the right heart that accurately mimics RV biomechanics and hemodynamics, including free wall, septal and valve motion. This model uses a biohybrid approach, combining a chemically treated endocardial scaffold with a soft robotic synthetic myocardium. When connected to a circulatory flow loop, the robotic right ventricle (RRV) replicates real-time hemodynamic changes in healthy and pathological conditions, including volume overload, RV systolic failure and pressure overload. The RRV also mimics clinical markers of RV dysfunction and is validated using an in vivo porcine model. Additionally, the RRV recreates chordae tension, simulating papillary muscle motion, and shows the potential for tricuspid valve repair and replacement in vitro. This work aims to provide a platform for developing tools for research and treatment for RV pathophysiology. 
    more » « less
  4. null (Ed.)
    Diastolic dysfunction is a common pathology occurring in about one third of patients affected by heart failure. This condition may not be associated with a marked decrease in cardiac output or systemic pressure and therefore is more difficult to diagnose than its systolic counterpart. Compromised relaxation or increased stiffness of the left ventricle induces an increase in the upstream pulmonary pressures, and is classified as secondary or group II pulmonary hypertension (2018 Nice classification). This may result in an increase in the right ventricular afterload leading to right ventricular failure. Elevated pulmonary pressures are therefore an important clinical indicator of diastolic heart failure (sometimes referred to as heart failure with preserved ejection fraction, HFpEF), showing significant correlation with associated mortality. However, accurate measurements of this quantity are typically obtained through invasive catheterization and after the onset of symptoms. In this study, we use the hemodynamic consistency of a differential-algebraic circulation model to predict pulmonary pressures in adult patients from other, possibly non-invasive, clinical data. We investigate several aspects of the problem, including the ability of model outputs to represent a sufficiently wide pathologic spectrum, the identifiability of the model's parameters, and the accuracy of the predicted pulmonary pressures. We also find that a classifier using the assimilated model parameters as features is free from the problem of missing data and is able to detect pulmonary hypertension with sufficiently high accuracy. For a cohort of 82 patients suffering from various degrees of heart failure severity, we show that systolic, diastolic, and wedge pulmonary pressures can be estimated on average within 8, 6, and 6 mmHg, respectively. We also show that, in general, increased data availability leads to improved predictions. 
    more » « less
  5. IntroductionPrimary pulmonary vein stenosis (PVS) is a rare congenital heart disease that proves to be a clinical challenge due to the rapidly progressive disease course and high rates of treatment complications. PVS intervention is frequently faced with in-stent restenosis and persistent disease progression despite initial venous recanalization with balloon angioplasty or stenting. Alterations in wall shear stress (WSS) have been previously associated with neointimal hyperplasia and venous stenosis underlying PVS progression. Thus, the development of patient-specific three-dimensional (3D)in vitromodels is needed to further investigate the biomechanical outcomes of endovascular and surgical interventions. MethodsIn this study, deidentified computed tomography images from three patients were segmented to generate perfusable phantom models of pulmonary veins before and after catheterization. These 3D reconstructions were 3D printed using a clear resin ink and used in a benchtop experimental setup. Computational fluid dynamic (CFD) analysis was performed on modelsin silicoutilizing Doppler echocardiography data to represent thein vivoflow conditions at the inlets. Particle image velocimetry was conducted using the benchtop perfusion setup to analyze WSS and velocity profiles and the results were compared with those predicted by the CFD model. ResultsOur findings indicated areas of undesirable alterations in WSS before and after catheterization, in comparison with the published baseline levels in the healthyin vivotissues that may lead to regional disease progression. DiscussionThe established patient-specific 3Din vitromodels and the developedin vitro–in silicoplatform demonstrate great promise to refine interventional approaches and mitigate complications in treating patients with primary PVS. 
    more » « less