skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Patient-specific 3D in vitro modeling and fluid dynamic analysis of primary pulmonary vein stenosis
IntroductionPrimary pulmonary vein stenosis (PVS) is a rare congenital heart disease that proves to be a clinical challenge due to the rapidly progressive disease course and high rates of treatment complications. PVS intervention is frequently faced with in-stent restenosis and persistent disease progression despite initial venous recanalization with balloon angioplasty or stenting. Alterations in wall shear stress (WSS) have been previously associated with neointimal hyperplasia and venous stenosis underlying PVS progression. Thus, the development of patient-specific three-dimensional (3D)in vitromodels is needed to further investigate the biomechanical outcomes of endovascular and surgical interventions. MethodsIn this study, deidentified computed tomography images from three patients were segmented to generate perfusable phantom models of pulmonary veins before and after catheterization. These 3D reconstructions were 3D printed using a clear resin ink and used in a benchtop experimental setup. Computational fluid dynamic (CFD) analysis was performed on modelsin silicoutilizing Doppler echocardiography data to represent thein vivoflow conditions at the inlets. Particle image velocimetry was conducted using the benchtop perfusion setup to analyze WSS and velocity profiles and the results were compared with those predicted by the CFD model. ResultsOur findings indicated areas of undesirable alterations in WSS before and after catheterization, in comparison with the published baseline levels in the healthyin vivotissues that may lead to regional disease progression. DiscussionThe established patient-specific 3Din vitromodels and the developedin vitro–in silicoplatform demonstrate great promise to refine interventional approaches and mitigate complications in treating patients with primary PVS.  more » « less
Award ID(s):
2044657
PAR ID:
10569783
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Cardiovascular Medicine
Volume:
11
ISSN:
2297-055X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Vascular cell overgrowth and lumen size reduction in pulmonary vein stenosis (PVS) can result in elevated PV pressure, pulmonary hypertension, cardiac failure, and death. Administration of chemotherapies such as rapamycin have shown promise by inhibiting the vascular cell proliferation; yet clinical success is limited due to complications such as restenosis and off‐target effects. The lack of in vitro models to recapitulate the complex pathophysiology of PVS has hindered the identification of disease mechanisms and therapies. This study integrated 3D bioprinting, functional nanoparticles, and perfusion bioreactors to develop a novel in vitro model of PVS. Bioprinted bifurcated PV constructs are seeded with endothelial cells (ECs) and perfused, demonstrating the formation of a uniform and viable endothelium. Computational modeling identified the bifurcation point at high risk of EC overgrowth. Application of an external magnetic field enabled targeting of the rapamycin‐loaded superparamagnetic iron oxide nanoparticles at the bifurcation site, leading to a significant reduction in EC proliferation with no adverse side effects. These results establish a 3D bioprinted in vitro model to study PV homeostasis and diseases, offering the potential for increased throughput, tunability, and patient specificity, to test new or more effective therapies for PVS and other vascular diseases. 
    more » « less
  2. Abstract Tracheal stenosis, a severe airway narrowing, poses significant challenges in respiratory function and often necessitates surgical intervention to restore proper airflow. This study aims to demonstrate how computational fluid dynamics (CFD) can provide a non-invasive, efficient, and highly individualized approach to assist surgeons in modeling and planning various surgical strategies for treatment. The CFD-based approach in this study provides significant advantages, including reduced time and cost, and the ability to analyze complex pulmonary airflow characteristics that are difficult to investigate using in vitro and in vivo studies. This research compares three tracheal geometries: a diseased airway with tracheal stenosis and two post-surgical configurations from different surgical plans. Simulations were conducted under four inhalation flow rates, i.e., rest (6 L/min), normal (30 L/min), moderate (60 L/min), and intensive exercise (120 L/min), to evaluate the impact of surgical outcomes on pulmonary airflow dynamics. The upper airway, modeled with a mouth inlet diameter of 20 mm, exhibited average velocities of 0.32, 1.59, 3.18, and 6.37 m/s, corresponding to the respective flow rates. The laminar model was used for the rest flow rate, while the shear stress transport (SST) k-ω model was applied to simulate turbulence with higher inhalation flow rates. The results revealed substantial improvements in flow parameters following surgery. The stenotic geometry exhibited extreme resistance, with pressure drops increasing from 1.96 Pa at rest to 318.9 Pa under intensive flow, and high wall shear stress (WSS) values peaking at 330.8 Pa. Surgical Plan 1 reduced pressure drops by up to 47% and WSS by 97%, while Surgical Plan 2 achieved even greater reductions, with pressure drops lowered by 45% and WSS reduced to 2.54 Pa under high flow rates. Localized flow disturbances, such as uneven airflow distribution among lung lobes, were also alleviated post-surgery. In the diseased airway, the right lower lobe received up to 40% of the total flow, causing severe imbalances. Surgical Plan 2 achieved the most uniform distribution, with all lobes receiving 13%-29% of airflow across all flow rates, ensuring effective oxygenation and minimizing risks of overdistension or under-perfusion. These findings suggest that the CFD-based approach employed in this study can effectively model surgical outcomes, providing surgeons with a fast, detailed, and non-invasive tool for tailoring procedures to individual patient needs. 
    more » « less
  3. Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency. A multimodal platform to quantitatively evaluate the effect of shape, size, and material on clinical outcomes could optimize monocusp design. This study introduces a benchtop soft biorobotic heart model, a computational fluid model of the RVOT, and a monocusp valve made from an entirely biological cell-assembled extracellular matrix (CAM) to tackle the multifaceted issue of monocusp failure. The hydrodynamic and mechanical performance of RVOT repair strategies was assessed in biorobotic and computational platforms. The monocusp valve design was validated in vivo in ovine models through echocardiography, cardiac magnetic resonance, and catheterization. These models supported assessment of surgical feasibility, handling, suturability, and hemodynamic and mechanical monocusp capabilities. The CAM-based monocusp offered a competent pulmonary valve with regurgitation of 4.6 ± 0.9% and a transvalvular pressure gradient of 4.3 ± 1.4 millimeters of mercury after 7 days of implantation in sheep. The biorobotic heart model, in silico analysis, and in vivo RVOT modeling allowed iteration in monocusp design not now feasible in a clinical environment and will support future surgical testing of biomaterials for complex congenital heart malformations. 
    more » « less
  4. Pamies, Pep (Ed.)
    Preclinical models of aortic stenosis can induce left ventricular pressure overload and coarsely control the severity of aortic constriction. However, they do not recapitulate the haemodynamics and flow patterns associated with the disease. Here we report the development of a customizable soft robotic aortic sleeve that can mimic the haemodynamics and biomechanics of aortic stenosis. By allowing for the adjustment of actuation patterns and blood-flow dynamics, the robotic sleeve recapitulates clinically relevant haemodynamics in a porcine model of aortic stenosis, as we show via in vivo echocardiography and catheterization studies, and a combination of in vitro and computational analyses. Using in vivo and in vitro magnetic resonance imaging, we also quantified the four-dimensional blood-flow velocity profiles associated with the disease and with bicommissural and unicommissural defects re-created by the robotic sleeve. The design of the sleeve, which can be adjusted on the basis of computed tomography data, allows for the design of patient-specific devices that may guide clinical decisions and improve the management and treatment of patients with aortic stenosis. 
    more » « less
  5. Background and objective: Wall shear stress (WSS) has been known to play a critical role in the development of several complications following coronary artery stenting, including in-stent restenosis and thrombosis. Computational fluid dynamics is often used to quantify the post-stenting WSS, which may potentially be used as a predictive metric. However, large-scale studies for WSS-based risk stratification often neglect the footprint of the stent due to reconstruction challenges. The primary objective of this study is to statistically evaluate the impact of the stent footprints (Xience and Resolute stents) on the computed endothelial WSS and quantitatively identify the relationship between these local hemodynamic alterations and the global properties of the vessel, such as curvature, on WSS. The ultimate goal is to evaluate whether and when it is worth including the footprint of the stent in an in-silico study to compute the WSS reliably. Methods: A previously developed semi-automated reconstruction approach for patient-specific coronaries was employed as a part of the SHEAR-STENT trial. A subset of patients was analyzed (N=30), and CFD simulations were performed with and without the stent to evaluate the impact of the stent footprint on WSS. Due to the computationally expensive nature of transient analyses, a sub-cohort of ten patients were used to assess the reliability of WSS obtained from steady computations as a surrogate for the time-averaged results. Global and local vessel curvature data were extracted for all cases and evaluated against stent-induced alterations in the WSS. The differences between the Xience and Resolute stent platforms were also examined to quantify each stent's unique WSS footprint. Results: Results from the surrogate analysis indicate that steady WSS serves as an excellent approximation of the time-averaged computations. The presence of either stent footprint causes a statistically significant decrease in the space-averaged WSS, and a significant increase in the endothelial regions exposed to very low WSS as well (<0.5 Pa). Negative correlations were observed between vessel curvature and WSS differences, indicating that macroscopic vessel characteristics play a more prominent role in determining endothelial WSS at higher curvature values. In our pool of cases, comparison of Xience and Resolute stents revealed that the Resolute platform seems to lead to lower space-averaged WSS and an increase in areas of very low WSS. Conclusion: These results outline (1) the necessity of including the stent footprint for accurate in-silico WSS analysis; (2) the global features of stented arteries serving as the dominant determinant of WSS past a certain curvature threshold; and (3) the Xience stent resulting in a milder presence of hemodynamically unfavorable WSS regions compared to the Resolute stent. Keywords: Computational fluid dynamics; Drug-eluting stents; In-silico clinical trials; Percutaneous coronary intervention; Wall shear stress. 
    more » « less