skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stabilizing 2D Pt‐Based Halide Perovskites via Solvent Lone Pair Donation
Abstract Platinum‐based halide perovskites exhibit promising optoelectronic properties along with merits of low‐temperature processing and stability. Current research on Pt halide perovskites is limited to 0D A2BX6structure as the ABX33D structure is thermodynamically unstable. Herein, the study reports the stabilization of the ABX3structure into a 2D layered phase, CsPtI3(DMSO), that is stable up to 181.5 °C. The 2D phase shows an excitonic peak at the absorption edge of 600 nm, indicating quantum confinement. It also exhibits a large Stokes shift due to intersystem crossing (ISC), with a quenched singlet excitonic fluorescence at 610 nm and strong triplet emission at 852 nm. Pt(II) co‐ordinates with dimethyl sulfoxide (DMSO) via σ‐donation of S lone‐pair electrons and π‐ back donation from Pt to S, stabilizing CsPtI3(DMSO) layered structure. The strong electronic interaction between DMSO and Pt(II) and orbital mixing lead to spin‐orbit‐coupling, facilitating ISC and singlet‐to‐triplet exciton energy transfer. The interaction of Pt and DMSO is further confirmed by addition of thioacetamide (TAA), a strong S‐donor, which retards the formation of 2D layered structure, and directly results in Cs2PtI6and Pt.  more » « less
Award ID(s):
2342007
PAR ID:
10551821
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
13
Issue:
6
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lead halide perovskites (LHPs), have attracted considerable attention across various applications owing to their exceptional optoelectronic properties. However, the main challenge hindering the broad adoption of lead halide perovskites lies in their stability and toxicity. In this review, we summarize the outstanding properties of platinum (Pt) halide perovskites, with a particular focus on the stability and applications of Cs2PtI6and its derivatives. Cs2PtI6has shown promising efficiency for photovoltaic devices, as well as photoelectrochemical water splitting with stable behavior in acid or basic conditions. Cs2PtI6also shows promise in gas sensing and thermoelectric devices. The emergence of 2D Pt (II) halide perovskites opens up new avenues for environmentally friendly materials for photonic and optoelectronic devices like room temperature phosphoresce and triplet‐triplet annihilation (TTA) based up‐conversion. image 
    more » « less
  2. Abstract A series of four oligothiophenes end‐capped with −Pt(PBu3)2Cl moieties on both ends of the oligomers was synthesized, and their excited state properties were investigated. The observation of low fluorescence quantum yield (<2 %) for the oligomers indicates the strong effect of platinum on the intersystem crossing (ISC) efficiency. No phosphorescence was detected for any of the oligomers; however, strong triplet‐triplet absorption was observed by nanosecond transient spectroscopy for oligomers with more than one thiophene unit. The oligomers displayed short triplet lifetimes (∼1–2 μs) compared to the unmetallated oligomers, due to large spin‐orbit coupling induced by the platinum atom. The lower limits of the ISC yields were indirectly determined by measuring the singlet oxygen quantum yields. Femtosecond–picosecond transient absorption studies revealed that the ISC rate ranges from 1012–1010 s−1, decreasing with increasing oligomer length. Electrochemical studies showed that the oligomers exhibit relatively low oxidation potentials (ca. 0.1 V vs. Fc/Fc+). Quenching of the oligomers’ triplet state absorption, simultaneously with the rise of their corresponding cationic radical absorption band in nanosecond transient spectra in the presence of methyl viologen, as an electron acceptor, established that the electron transfer occurs from their triplet state. 
    more » « less
  3. Abstract High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet‐triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy‐coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin‐orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution‐stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super‐exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC) butform triplets in MOF in contrast to the frameworks that are built from linkers with sizablekISCbut. This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes. 
    more » « less
  4. Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum( ii ) dimer known to undergo a Pt–Pt bond contraction in the metal–metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1 MMLCT state. The results demonstrated that the 145 cm −1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt–Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck–Condon (FC) state to the 3 MMLCT state was mediated by a triplet ligand-centered ( 3 LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of the Pt–Pt stretching wavepacket motions. Moreover, it was found that the CVWP motion had 110 cm −1 frequency decays with the damping time of ∼0.2 ps, matching the time constant of 0.253 ps, corresponding to a redshift in the SE feature at early times. This observation indicates that the Pt–Pt bond contraction changes the stretching frequency from 110 to 145 cm −1 and stabilizes the 1 MMLCT state relative to the 3 LC state with a ∼0.2 ps time scale. Thus, the ultrafast ISC from the 1 MMLCT to the 3 LC states occurs before the Pt–Pt bond shortening. The findings herein provide insight into understanding the impact of Pt–Pt bond contraction on the ultrafast branching of the 1 MMLCT population into the direct ( 1 MMLCT → 3 MMLCT) and indirect ISC pathways ( 1 MMLCT → 3 LC → 3 MMLCT) in the Pt( ii ) dimer. These results revealed intricate excited state electronic and nuclear motions that could steer the reaction pathways with a level of detail that has not been achieved before. 
    more » « less
  5. The strong spin–orbit coupling (SOC) in lead halide perovskites, when inversion symmetry is lifted, has provided opportunities for investigating the Rashba effect in these systems. Moreover, the strong orbital moment, which, in turn, impacts the spin-pair in singlet and triplet electronic states, plays a significant role in enhancing the optoelectronic properties in the presence of external magnetic fields in lead halide perovskites. Here, we investigate the effect of weak magnetic fields (<1 T) on the photoluminescence (PL) properties of [Formula: see text] nanocrystals with and without Ruddlesden–Popper (RP) faults and single crystals of [Formula: see text]. Along with an enhancement in the PL intensity as a function of an external magnetic field, which is observed in both lead bromide perovskites, the PL emission red-shifts in [Formula: see text] nanocrystals. Density-functional theory calculations of the electronic band-edge in [Formula: see text] show almost no change in the energy gap as a function of the external magnetic field. The experimental results, thus, suggest the role of mixing of the triplet and singlet excitonic states under weak magnetic fields. This is further deduced from an enhancement in PL lifetimes as a function of the field in [Formula: see text]. In [Formula: see text], an increase in PL intensity is observed under weak magnetic fields; however, no changes in the peak energy or PL lifetimes are observed. The internal magnetic fields due to SOC are characterized for all three samples and found to be the highest for [Formula: see text] nanocrystals with RP faults. 
    more » « less