Out-of-distribution (OOD) detection and OOD generalization are widely studied in Deep Neural Networks (DNNs), yet their relationship remains poorly understood. We empirically show that the degree of Neural Collapse (NC) in a network layer is inversely related with these objectives: stronger NC improves OOD detection but degrades generalization, while weaker NC enhances generalization at the cost of detection. This trade-off suggests that a single feature space cannot simultaneously achieve both tasks. To address this, we develop a theoretical framework linking NC to OOD detection and generalization. We show that entropy regularization mitigates NC to improve generalization, while a fixed Simplex ETF projector enforces NC for better detection. Based on these insights, we propose a method to control NC at different DNN layers. In experiments, our method excels at both tasks across OOD datasets and DNN architectures.
more »
« less
What Variables Affect Out-of-Distribution Generalization in Pretrained Models?
Embeddings produced by pre-trained deep neural networks (DNNs) are widely used; however, their efficacy for downstream tasks can vary widely. We study the factors influencing transferability and out-of-distribution (OOD) generalization of pre-trained DNN embeddings through the lens of the tunnel effect hypothesis, which is closely related to intermediate neural collapse. This hypothesis suggests that deeper DNN layers compress representations and hinder OOD generalization. Contrary to earlier work, our experiments show this is not a universal phenomenon. We comprehensively investigate the impact of DNN architecture, training data, image resolution, and augmentations on transferability. We identify that training with high-resolution datasets containing many classes greatly reduces representation compression and improves transferability. Our results emphasize the danger of generalizing findings from toy datasets to broader contexts.
more »
« less
- PAR ID:
- 10552027
- Publisher / Repository:
- Neural Information Processing Systems (NeurIPS)
- Date Published:
- Subject(s) / Keyword(s):
- Forward Transfer Continual Learning Representation Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Interest in automatically searching for Transformer neural architectures for machine translation (MT) has been increasing. Current methods show promising results in in-domain settings, where training and test data share the same distribution. However, in real-world MT applications, it is common that the test data has a different distribution than the training data. In these out-of-domain (OOD) situations, Transformer architectures optimized for the linguistic characteristics of the training sentences struggle to produce accurate translations for OOD sentences during testing. To tackle this issue, we propose a multi-level optimization based method to automatically search for neural architectures that possess robust OOD generalization capabilities. During the architecture search process, our method automatically synthesizes approximated OOD MT data, which is used to evaluate and improve the architectures' ability of generalizing to OOD scenarios. The generation of approximated OOD data and the search for optimal architectures are executed in an integrated, end-to-end manner. Evaluated across multiple datasets, our method demonstrates strong OOD generalization performance, surpassing state-of-the-art approaches.more » « less
-
Artificial intelligence-based prostate cancer (PCa) detection models have been widely explored to assist clinical diagnosis. However, these trained models may generate erroneous results specifically on datasets that are not within training distribution. In this paper, we propose an approach to tackle this so-called out-of-distribution (OOD) data problem. Specifically, we devise an end-to-end unsupervised framework to estimate uncertainty values for cases analyzed by a previously trained PCa detection model. Our PCa detection model takes the inputs of bpMRI scans and through our proposed approach we identify OOD cases that are likely to generate degraded performance due to the data distribution shifts. The proposed OOD framework consists of two parts. First, an autoencoder-based reconstruction network is proposed, which learns discrete latent representations of in-distribution data. Second, the uncertainty is computed using perceptual loss that measures the distance between original and reconstructed images in the feature space of a pre-trained PCa detection network. The effectiveness of the proposed framework is evaluated on seven independent data collections with a total of 1,432 cases. The performance of pre-trained PCa detection model is significantly improved by excluding cases with high uncertainty.more » « less
-
Pre-training serves as a broadly adopted starting point for transfer learning on various downstream tasks. Recent investigations of lottery tickets hypothesis (LTH) demonstrate such enormous pre-trained models can be replaced by extremely sparse subnetworks (a.k.a. matching subnetworks) without sacrificing transferability. However, practical security-crucial applications usually pose more challenging requirements beyond standard transfer, which also demand these subnetworks to overcome adversarial vulnerability. In this paper, we formulate a more rigorous concept, Double-Win Lottery Tickets, in which a located subnetwork from a pre-trained model can be independently transferred on diverse downstream tasks, to reach BOTH the same standard and robust generalization, under BOTH standard and adversarial training regimes, as the full pre-trained model can do. We comprehensively examine various pre-training mechanisms and find that robust pre-training tends to craft sparser double-win lottery tickets with superior performance over the standard counterparts. For example, on downstream CIFAR-10/100 datasets, we identify double-win matching subnetworks with the standard, fast adversarial, and adversarial pre-training from ImageNet, at 89.26%/73.79%, 89.26%/79.03%, and 91.41%/83.22% sparsity, respectively. Furthermore, we observe the obtained double-win lottery tickets can be more data-efficient to transfer, under practical data-limited (e.g., 1% and 10%) downstream schemes. Our results show that the benefits from robust pre-training are amplified by the lottery ticket scheme, as well as the data-limited transfer setting.more » « less
-
Deep neural network (DNN) models, despite their impressive performance, are vulnerable to exploitation by attackers who attempt to transfer them to other tasks for their own benefit. Current defense strategies mainly address this vulnerability at the model parameter level, leaving the potential of architectural-level defense largely unexplored. This paper, for the first time, addresses the issue of model protection by reducing transferability at the architecture level. Specifically, we present a novel neural architecture search (NAS)-enabled algorithm that employs zero-cost proxies and evolutionary search, to explore model architectures with low transferability. Our method, namely ArchLock, aims to achieve high performance on the source task, while degrading the performance on potential target tasks, i.e., locking the transferability of a DNN model. To achieve efficient cross-task search without accurately knowing the training data owned by the attackers, we utilize zero-cost proxies to speed up architecture evaluation and simulate potential target task embeddings to assist cross-task search with a binary performance predictor. Extensive experiments on NAS-Bench-201 and TransNAS-Bench-101 demonstrate that ArchLock reduces transferability by up to 30% and 50%, respectively, with negligible performance degradation on source tasks (<2%). The code is available at https://github.com/Tongzhou0101/ArchLock.more » « less
An official website of the United States government

