skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 13, 2026

Title: Controlling Neural Collapse Enhances Out-of-Distribution Detection and Transfer Learning
Out-of-distribution (OOD) detection and OOD generalization are widely studied in Deep Neural Networks (DNNs), yet their relationship remains poorly understood. We empirically show that the degree of Neural Collapse (NC) in a network layer is inversely related with these objectives: stronger NC improves OOD detection but degrades generalization, while weaker NC enhances generalization at the cost of detection. This trade-off suggests that a single feature space cannot simultaneously achieve both tasks. To address this, we develop a theoretical framework linking NC to OOD detection and generalization. We show that entropy regularization mitigates NC to improve generalization, while a fixed Simplex ETF projector enforces NC for better detection. Based on these insights, we propose a method to control NC at different DNN layers. In experiments, our method excels at both tasks across OOD datasets and DNN architectures.  more » « less
Award ID(s):
2326491 2317706
PAR ID:
10644276
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proc. International Conference on Machine Learning (ICML)
Date Published:
Subject(s) / Keyword(s):
Forward transfer Representation geometry Transfer Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern machine learning models deployed in the wild can encounter both covariate and semantic shifts, giving rise to the problems of out-of-distribution (OOD) generalization and OOD detection respectively. While both problems have received significant research attention lately, they have been pursued independently. This may not be surprising, since the two tasks have seemingly conflicting goals. This paper provides a new unified approach that is capable of simultaneously generalizing to covariate shifts while robustly detecting semantic shifts. We propose a margin-based learning framework that exploits freely available unlabeled data in the wild that captures the environmental test-time OOD distributions under both covariate and semantic shifts. We show both empirically and theoretically that the proposed margin constraint is the key to achieving both OOD generalization and detection. Extensive experiments show the superiority of our framework, outperforming competitive baselines that specialize in either OOD generalization or OOD detection. Code is publicly available at https://github.com/deeplearning-wisc/scone. 
    more » « less
  2. Embeddings produced by pre-trained deep neural networks (DNNs) are widely used; however, their efficacy for downstream tasks can vary widely. We study the factors influencing transferability and out-of-distribution (OOD) generalization of pre-trained DNN embeddings through the lens of the tunnel effect hypothesis, which is closely related to intermediate neural collapse. This hypothesis suggests that deeper DNN layers compress representations and hinder OOD generalization. Contrary to earlier work, our experiments show this is not a universal phenomenon. We comprehensively investigate the impact of DNN architecture, training data, image resolution, and augmentations on transferability. We identify that training with high-resolution datasets containing many classes greatly reduces representation compression and improves transferability. Our results emphasize the danger of generalizing findings from toy datasets to broader contexts. 
    more » « less
  3. Out-of-distribution (OOD) detection plays a crucial role in ensuring the safe deployment of deep neural network (DNN) classifiers. While a myriad of methods have focused on improving the performance of OOD detectors, a critical gap remains in interpreting their decisions. We help bridge this gap by providing explanations for OOD detectors based on learned high-level concepts. We first propose two new metrics for assessing the effectiveness of a particular set of concepts for explaining OOD detectors: 1) detection completeness, which quantifies the sufficiency of concepts for explaining an OOD-detector’s decisions, and 2) concept separability, which captures the distributional separation between in-distribution and OOD data in the concept space. Based on these metrics, we propose an unsupervised framework for learning a set of concepts that satisfy the desired properties of high detection completeness and concept separability, and demonstrate its effectiveness in providing concept-based explanations for diverse off-the-shelf OOD detectors. We also show how to identify prominent concepts contributing to the detection results, and provide further reasoning about their decisions. 
    more » « less
  4. Interest in automatically searching for Transformer neural architectures for machine translation (MT) has been increasing. Current methods show promising results in in-domain settings, where training and test data share the same distribution. However, in real-world MT applications, it is common that the test data has a different distribution than the training data. In these out-of-domain (OOD) situations, Transformer architectures optimized for the linguistic characteristics of the training sentences struggle to produce accurate translations for OOD sentences during testing. To tackle this issue, we propose a multi-level optimization based method to automatically search for neural architectures that possess robust OOD generalization capabilities. During the architecture search process, our method automatically synthesizes approximated OOD MT data, which is used to evaluate and improve the architectures' ability of generalizing to OOD scenarios. The generation of approximated OOD data and the search for optimal architectures are executed in an integrated, end-to-end manner. Evaluated across multiple datasets, our method demonstrates strong OOD generalization performance, surpassing state-of-the-art approaches. 
    more » « less
  5. We study the problem of out-of-distribution (OOD) detection, that is, detecting whether a machine learning (ML) model's output can be trusted at inference time. While a number of tests for OOD detection have been proposed in prior work, a formal framework for studying this problem is lacking. We propose a definition for the notion of OOD that includes both the input distribution and the ML model, which provides insights for the construction of powerful tests for OOD detection. We also propose a multiple hypothesis testing inspired procedure to systematically combine any number of different statistics from the ML model using conformal p-values. We further provide strong guarantees on the probability of incorrectly classifying an in-distribution sample as OOD. In our experiments, we find that threshold-based tests proposed in prior work perform well in specific settings, but not uniformly well across different OOD instances. In contrast, our proposed method that combines multiple statistics performs uniformly well across different datasets and neural networks architectures. 
    more » « less