skip to main content


Title: Authigenic Iron Is a Significant Component of Oceanic Labile Particulate Iron Inventories
Abstract

Particulate phases transport trace metals (TM) and thereby exert a major control on TM distribution in the ocean. Particulate TMs can be classified by their origin as lithogenic (crustal material), biogenic (cellular), or authigenic (formed in situ), but distinguishing these fractions analytically in field samples is a challenge often addressed using operational definitions and assumptions. These different phases require accurate characterization because they have distinct roles in the biogeochemical iron cycle. Particles collected from the upper 2,000 m of the northwest subtropical Atlantic Ocean over four seasonal cruises throughout 2019 were digested with a chemical leach to operationally distinguish labile particulate material from refractory lithogenics. Direct measurements of cellular iron (Fe) were used to calculate the biogenic contribution to the labile Fe fraction, and any remaining labile material was defined as authigenic. Total particulate Fe (PFe) inventories varied <15% between seasons despite strong seasonality in dust inputs. Across seasons, the total PFe inventory (±1SD) was composed of 73 ± 13% lithogenic, 18 ± 7% authigenic, and 10 ± 8% biogenic Fe above the deep chlorophyll maximum (DCM), and 69 ± 8% lithogenic, 30 ± 8% authigenic, and 1.1 ± 0.5% biogenic Fe below the DCM. Data from three other ocean regions further reveal the importance of the authigenic fraction across broad productivity and Fe gradients, comprising ca. 20%–27% of total PFe.

 
more » « less
Award ID(s):
2310573 1829777
PAR ID:
10552042
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley - AGU
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
37
Issue:
12
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present full water depth sections of size‐fractionated (1–51 μm; >51 μm) concentrations of suspended particulate matter and major particle phase composition (particulate organic matter [POM], including its carbon isotopic composition [POC‐δ13C] and C:N ratio, calcium carbonate [CaCO3], opal, lithogenic particles, and iron and manganese [oxyhydr]oxides) from the U.S. GEOTRACES Arctic Cruise (GN01) in the western Arctic in 2015. Whereas biogenic particles (POM and opal) dominate the upper 1,000 m, lithogenic particles are the most abundant particle type at depth. Minor phases such as manganese (Mn) oxides are higher in GN01 than in any other U.S. GEOTRACES cruises so far. Extremely depleted POC‐δ13C, as low as ~ −32‰, is ubiquitous at the surface of the western Arctic Ocean as a result of different growth rates of phytoplankton. Moderate penetration of depleted POC‐δ13C to depth indicates active sinking of large particles in the central basin. Lateral transport from the Chukchi shelf is also of significance in the western Arctic, as is evident from increases in biogenic silica to POC ratios and Mn oxide concentrations in the halocline, as well as lithogenic element contents in the deep waters. Our study supports previous suggestions of the near absence of CaCO3in the Arctic Basin. This study presents the first data set of concentration and composition of suspended particles in the western Arctic Ocean and sheds new light on the vertical and lateral processes that govern particle distribution in this enclosed ocean basin.

     
    more » « less
  2. Abstract

    Atmospheric iron solubility varies depending on whether the particles are collected in rural or urban areas, with urban areas showing increased iron solubility. In this study, we investigate if the iron species present in different environments affects its ultimate solubility. Field data are presented from the Platte River Air Pollution and Photochemistry Experiment (PRAPPE), aimed at understanding the interactions between organic carbon and trace elements in atmospheric particulate matter (PM). 24‐hr PM2.5samples were collected during the summer and winter (2016–2017), at three different sites on the Eastern Colorado plains: an urban, agricultural, and a mixed site. Downtown Denver had an average total and water‐soluble iron air concentration of 181.2 and 7.7 ng m−3, respectively. Platteville, the mixed site, had an average of total iron of 76.1 ng m−3, with average water‐soluble iron concentration of 9.1 ng m−3. Jackson State Park (rural/agricultural) had the lowest total iron average of 31.5 ng m−3and the lowest water‐soluble iron average, 1.3 ng m−3. The iron oxidation state and chemical speciation of 97 samples across all sites and seasons was probed by X‐ray absorption near edge structure (XANES) spectroscopy. The most common iron phases observed were almandine (Fe₃Al₂Si₃O₁₂) (Denver 21%, Platteville 16%, Jackson 24%), magnetite (Fe3O4) (Denver 9%, Platteville 4%, Jackson 5%) and Fe (III)dextran (Denver 5%, Platteville 13%, Jackson 5%), a surrogate for Fe‐organic complexes. Additionally, native iron [Fe(0)] was found in significant amounts at all sites. No correlation was observed between iron solubility and iron oxidation state or chemical speciation.

     
    more » « less
  3. Abstract

    Throughout the open ocean, a minimum in dissolved iron concentration (dFe) overlaps with the deep chlorophyll maximum (DCM), which marks the lower limit of the euphotic zone. Maximizing light capture in these dim waters is expected to require upregulation of Fe-bearing photosystems, further depleting dFe and possibly leading to co-limitation by both iron and light. However, this effect has not been quantified for important phytoplankton groups like Prochlorococcus, which contributes most of the productivity in the oligotrophic DCM. Here, we present culture experiments with Prochlorococcus strain MIT1214, a member of the Low Light 1 ecotype isolated from the DCM in the North Pacific subtropical gyre. Under a matrix of iron and irradiance matching those found at the DCM, the ratio of Fe to carbon in Prochlorococcus MIT1214 cells ranged from 10–40 × 10−6 mol Fe:mol C and increased with light intensity and growth rate. These results challenge theoretical models predicting highest Fe:C at lowest light intensity, and are best explained by a large photosynthetic Fe demand that is not downregulated at higher light. To sustain primary production in the DCM with the rigid Fe requirements of low-light-adapted Prochlorococcus, dFe must be recycled rapidly and at high efficiency.

     
    more » « less
  4. The GEOTRACES program has greatly expanded measurements of trace elements, which serve as key nutrients, harmful contaminants, and tracers of ocean processes and past conditions. Many elements tend to associate with particulate matter, and GEOTRACES has been particularly valuable for growing our understanding of this fraction. Focusing on the micronutrient iron as an example, GEOTRACES data demonstrate that the majority of iron in the ocean is particulate. Chemically labile particulate iron, likely available for biological use, is also often more abundant than dissolved forms, particularly near continents and in the deep sea. This highlights the need to consider the particulate fraction in conceptual and numeric ocean models. Direct comparisons of particle-sampling methods highlight both the abundance of small particles (<0.45–0.8 μm), whose biogeochemical roles are still poorly known, and the difficulty in consistently capturing large, faster-sinking particles. In situ pumps with 0.8 μm filters often capture less small particulate iron than bottle-collected samples filtered onto 0.45 μm filters, but they can also capture more material near some sources. GEOTRACES datasets contain nearly sevenfold more dissolved than particulate iron measurements, and ongoing efforts to pair these measurements are needed in order to fully understand the cycles of iron and other important elements.

     
    more » « less
  5. Abstract

    This study provides new data on the properties of aerosol iron (Fe) over the Antarctic Peninsula, one of the fastest warming regions on Earth in recent decades. Atmospheric deposition delivers Fe, a limiting micronutrient, to the Southern Ocean, and aerosol particle size influences the air‐to‐sea deposition rate and fractional solubility of aerosol Fe. Size‐segregated aerosols were collected at Palmer Station on the West Antarctic Peninsula during austral summer 2016–2017. Results show single‐mode size distribution of aerosol Fe, peaking at 4.4 μm diameter. The average concentration of total aerosol Fe was 1.3 (±0.40) ng m−3(range 0.74–1.8 ng m−3). High concentrations of total aerosol Fe occurred in January, implying increased Fe source strength then. Total labile Fe varied between 0.019 and 0.095 ng m−3, and labile Fe (II) accounted for ~90% of the total labile Fe. The average fractional solubility for total Fe was 3.8% (±1.5%) (range 2.5–7.3%). Estimated dry deposition fluxes for the study period were 3.2 μg m−2 year−1for total labile Fe and 83 μg m−2 year−1for total Fe in aerosols. We speculate that local and regional dust sources in Antarctica contributed to the observed aerosol Fe in austral summer and that warming on the Antarctic Peninsula during the past half century may have increased the formation of dust sources in this region. The potential biogeochemical impact of atmospheric Fe input to the West Antarctic Peninsula shelf waters and adjacent pelagic surface waters of the Southern Ocean may need to be re‐evaluated.

     
    more » « less