Abstract In this study, we carry out robust optimal design for the machining operations, one key process in wafer polishing in chip manufacturing, aiming to avoid the peculiar regenerative chatter and maximize the material removal rate (MRR) considering the inherent material and process uncertainty. More specifically, we characterize the cutting tool dynamics using a delay differential equation (DDE) and enlist the temporal finite element method (TFEM) to derive its approximate solution and stability index given process settings or design variables. To further quantify the inherent uncertainty, replications of TFEM under different realizations of random uncontrollable variables are performed, which however incurs extra computational burden. To eschew the deployment of such a crude Monte Carlo (MC) approach at each design setting, we integrate the stochastic TFEM with a stochastic surrogate model, stochastic kriging, in an active learning framework to sequentially approximate the stability boundary. The numerical result suggests that the nominal stability boundary attained from this method is on par with that from the crude MC, but only demands a fraction of the computational overhead. To further ensure the robustness of process stability, we adopt another surrogate, the Gaussian process, to predict the variance of the stability index at unexplored design points and identify the robust stability boundary per the conditional value at risk (CVaR) criterion. Therefrom, an optimal design in the robust stable region that maximizes the MRR can be identified.
more »
« less
Computationally efficient and error aware surrogate construction for numerical solutions of subsurface flow through porous media
Limiting the injection rate to restrict the pressure below a threshold at a critical location can be an important goal of simulations that model the subsurface pressure between injection and extraction wells. The pressure is approximated by the solution of Darcy’s partial differential equation for a given permeability field. The subsurface permeability is modeled as a random field since it is known only up to statistical properties. This induces uncertainty in the computed pressure. Solving the partial differential equation for an ensemble of random permeability simulations enables estimating a probability distribution for the pressure at the critical location. These simulations are computationally expensive, and practitioners often need rapid online guidance for real-time pressure management. An ensemble of numerical partial differential equation solutions is used to construct a Gaussian process regression model that can quickly predict the pressure at the critical location as a function of the extraction rate and permeability realization. The Gaussian process surrogate analyzes the ensemble of numerical pressure solutions at the critical location as noisy observations of the true pressure solution, enabling robust inference using the conditional Gaussian process distribution. Our first novel contribution is to identify a sampling methodology for the random environment and matching kernel technology for which fitting the Gaussian process regression model scales as O(nlog 𝑛) instead of the typical O(𝑛^3 ) rate in the number of samples 𝑛 used to fit the surrogate. The surrogate model allows almost instantaneous predictions for the pressure at the critical location as a function of the extraction rate and permeability realization. Our second contribution is a novel algorithm to calibrate the uncertainty in the surrogate model to the discrepancy between the true pressure solution of Darcy’s equation and the numerical solution. Although our method is derived for building a surrogate for the solution of Darcy’s equation with a random permeability field, the framework broadly applies to solutions of other partial differential equations with random coefficients.
more »
« less
- Award ID(s):
- 2316011
- PAR ID:
- 10552114
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Advances in Water Resources
- Volume:
- 193
- Issue:
- C
- ISSN:
- 0309-1708
- Page Range / eLocation ID:
- 104836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The problem of parameter identification appears in many physical applications. A parameter of particular interest in cancer treatment is permeability, which modulates the fluidic streamlines in the tumor microenvironment. Most of the existing permeability identification techniques are invasive and not feasible to identify the permeability with minimal interference with the porous structure in their working conditions. In this paper, a theoretical framework utilizing partial differential equation (PDE)-constrained optimization strategies is established to identify a spatially distributed permeability of a porous structure from its modulated external velocity field measured around the structure. In particular, the flow around and through the porous media are governed by the steady-state Navier–Stokes–Darcy model. The performance of our approach is validated via numerical and experimental tests for the permeability of a 3D printed porous surrogate in a micro-fluidic chip based on the sampled optical velocity measurement. Both numerical and experimental results show a high precision of the permeability estimation.more » « less
-
In magnetic confinement fusion devices, the equilibrium configuration of a plasma is determined by the balance between the hydrostatic pressure in the fluid and the magnetic forces generated by an array of external coils and the plasma itself. The location of the plasma is not known a priori and must be obtained as the solution to a free boundary problem. The partial differential equation that determines the behavior of the combined magnetic field depends on a set of physical parameters (location of the coils, intensity of the electric currents going through them, magnetic permeability, etc.) that are subject to uncertainty and variability. The confinement region is in turn a function of these stochastic parameters as well. In this work, we consider variations on the current intensities running through the external coils as the dominant source of uncertainty. This leads to a parameter space of dimension equal to the number of coils in the reactor. With the aid of a surrogate function built on a sparse grid in parameter space, a Monte Carlo strategy is used to explore the effect that stochasticity in the parameters has on important features of the plasma boundary such as the location of the x-point, the strike points, and shaping attributes such as triangularity and elongation. The use of the surrogate function reduces the time required for the Monte Carlo simulations by factors that range between 7 and over 30.more » « less
-
We report an experimental investigation of pressure-driven flow of a viscous liquid across thin polydimethylsiloxane (PDMS) membranes. Our experiments revealed a nonlinear relation between the flow rate $$Q$$ and the applied pressure drop $$\unicode[STIX]{x0394}p$$ , in apparent disagreement with Darcy’s law, which dictates a linear relationship between flow rate, or average velocity, and pressure drop. These observations suggest that the effective permeability of the membrane decreases with pressure due to deformation of the nanochannels in the PDMS polymeric network. We propose a model that incorporates the effects of pressure-induced deformation of the hyperelastic porous membrane at three distinct scales: the membrane surface area, which increases with pressure, the membrane thickness, which decreases with pressure, and the structure of the porous material, which is deformed at the nanoscale. With this model, we are able to rationalize the deviation between Darcy’s law and the data. Our result represents a novel case in which macroscopic deformations can impact the microstructure and transport properties of soft materials.more » « less
-
We study thestochastic heat equationon subject to a centered Gaussian noise that is white in time and colored in space.The drift term is assumed to satisfy an Osgood-type condition and the diffusion coefficient may have certain related growth. We show that there exists random field solution which do not explode in finite time. This complements and improves upon recent results on blow-up of solutions to stochastic partial differential equations.more » « less
An official website of the United States government
