skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surrogate approximation of the Grad–Shafranov free boundary problem via stochastic collocation on sparse grids
In magnetic confinement fusion devices, the equilibrium configuration of a plasma is determined by the balance between the hydrostatic pressure in the fluid and the magnetic forces generated by an array of external coils and the plasma itself. The location of the plasma is not known a priori and must be obtained as the solution to a free boundary problem. The partial differential equation that determines the behavior of the combined magnetic field depends on a set of physical parameters (location of the coils, intensity of the electric currents going through them, magnetic permeability, etc.) that are subject to uncertainty and variability. The confinement region is in turn a function of these stochastic parameters as well. In this work, we consider variations on the current intensities running through the external coils as the dominant source of uncertainty. This leads to a parameter space of dimension equal to the number of coils in the reactor. With the aid of a surrogate function built on a sparse grid in parameter space, a Monte Carlo strategy is used to explore the effect that stochasticity in the parameters has on important features of the plasma boundary such as the location of the x-point, the strike points, and shaping attributes such as triangularity and elongation. The use of the surrogate function reduces the time required for the Monte Carlo simulations by factors that range between 7 and over 30.  more » « less
Award ID(s):
1819115
PAR ID:
10318339
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of computational physics
ISSN:
0021-9991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating and quantifying uncertainty in system parameters remains a big challenge in applied and computational mathematics. A subset of these problems includes estimating periodic parameters that have unknown dynamics. Along with their time series, the period of these parameters may also be unknown and need to be estimated. The aim of this paper is to address the periodic parameter estimation problem, with particular focus on exploring the associated uncertainty, using Monte Carlo particle methods, such as the ensemble Kalman filter. Both parameter tracking and piecewise function approximations of periodic parameters are considered, highlighting aspects of parameter uncertainty in each approach when considering factors such as the frequency of available data and the number of piecewise segments used in the approximation. Estimation of the period of the periodic parameters and related uncertainty is also analyzed in the piecewise formulation. The pros and cons of each approach are discussed relative to a numerical example estimating the external voltage parameter in the FitzHugh-Nagumo system for modeling the spiking dynamics of neurons. 
    more » « less
  2. Magnetic fields with quasi-symmetry are known to provide good confinement of charged particles and plasmas, but the extent to which quasi-symmetry can be achieved in practice has remained an open question. Recent work [M. Landreman and E. Paul, Phys. Rev. Lett. 128, 035001, 2022] reports the discovery of toroidal magnetic fields that are quasi-symmetric to orders-of-magnitude higher precision than previously known fields. We show that these fields can be accurately produced using electromagnetic coils of only moderate engineering complexity, that is, coils that have low curvature and that are sufficiently separated from each other. Our results demonstrate that these new quasi-symmetric fields are relevant for applications requiring the confinement of energetic charged particles for long time scales, such as nuclear fusion. The coils’ length plays an important role for how well the quasi-symmetric fields can be approximated. For the longest coil set considered and a mean field strength of 1 T, the departure from quasi-symmetry is of the order of Earth’s magnetic field. Additionally, we find that magnetic surfaces extend far outside the plasma boundary used by Landreman and Paul, providing confinement far from the core. Simulations confirm that the magnetic fields generated by the new coils confine particles with high kinetic energy substantially longer than previously known coil configurations. In particular, when scaled to a reactor, the best found configuration loses only 0.04% of energetic particles born at midradius when following guiding center trajectories for 200 ms. 
    more » « less
  3. Abstract In the design of stellarators, energetic particle confinement is a critical point of concern which remains challenging to study from a numerical point of view. Standard Monte Carlo (MC) analyses are highly expensive because a large number of particle trajectories need to be integrated over long time scales, and small time steps must be taken to accurately capture the features of the wide variety of trajectories. Even when they are based on guiding center trajectories, as opposed to full-orbit trajectories, these standard MC studies are too expensive to be included in most stellarator optimization codes. We present the first multifidelity Monte Carlo (MFMC) scheme for accelerating the estimation of energetic particle confinement in stellarators. Our approach relies on a two-level hierarchy, in which a guiding center model serves as the high-fidelity model, and a data-driven linear interpolant is leveraged as the low-fidelity surrogate model. We apply MFMC to the study of energetic particle confinement in a four-period quasi-helically symmetric stellarator, assessing various metrics of confinement. Stemming from the very high computational efficiency of our surrogate model as well as its sufficient correlation to the high-fidelity model, we obtain speedups of up to 10 with MFMC compared to standard MC. 
    more » « less
  4. A model for plasma confinement is developed and applied for describing an electrically confined thermonuclear plasma. The plasma confinement model includes both an analytical approach that excludes space charge effects and a classical trajectory Monte Carlo simulation that accounts for space charge. The plasma consists of reactant ions that form a non-neutral plasma without electrons. The plasma drifts around a negatively charged electrode. Conditions are predicted for confining a deuterium–tritium plasma using a 460 kV applied electric potential difference. The ion plasma would have a 20 keV temperature, a 1020 m−3 peak density, and a 110 keV average kinetic energy per ion (including drift and thermal portions at a certain point in the plasma). The fusion energy production rate is predicted to be 10 times larger than the energy loss rate, including contributions associated with both plasma loss to electrodes and secondary electron emission. However, an approach for enhancing the fusion power density may have to be employed to realize a practical use for centrifugal-electrostatic confinement fusion. 
    more » « less
  5. The possibility of fueling a magnetically confined plasma using particle sources located inside of the plasma is studied by computer simulation. Magnetic plasma expulsion [R. E. Phillips and C. A. Ordonez, Phys. Plasmas 25, 012508 (2018)] would serve to keep the magnetically confined plasma away from the particle sources without adversely affecting plasma confinement. The simulations show how charged particles can be injected into a plasma by using particle sources located directly between two current-carrying wires that create a magnetic expulsion field. Plasma fueling with the average energy of injected particles greater than the average energy of plasma particles may serve for heating the plasma. Also, plasma fueling with positive and negative particles injected at different rates may serve for changing the neutrality of the plasma. Conditions for plasma fueling are investigated using a classical trajectory Monte Carlo simulation. Two types of particle sources are considered, and the fraction of emitted particles that reach (and fuel) the magnetically confined plasma is evaluated for each. 
    more » « less