ABSTRACT Cyclic polymers have drawn considerable interest for their peculiar physical properties in comparison to linear polymers, despite their equivalent compositions. Synthetically, cyclic polymers can be accessed through either macrocyclic ring‐closure or by ring‐expansion polymerization, but the main challenge with either method is the production of highly pure cyclic polymer samples. This highlight describes advances in the area of cyclic polymer synthesis, with a particular focus on ring‐expansion metathesis polymerization. Methods for characterizing cyclic polymers and assessing their purity are also discussed in order to emphasize the need for additional robust and reliable methods for synthesizing and studying topologically complex macromolecules. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 228–242
more »
« less
Bridging Frontiers in Macromolecular and Supramolecular Sciences with Living Cationic Ring‐Opening Polymerization of Self‐Organizable Dendronized Cyclic‐Imino Ethers Generating Soft Frank–Kasper and Quasicrystal Arrays
Abstract Living cationic ring‐opening polymerization accompanied by isomerization of cyclic imino ethers is performed at high temperatures that provide access to the synthesis of self‐organizable systems in their isotropic melt or solution state. This Perspective discusses fundamental mechanistic principles of this polymerization and bridges with the polymerization of dendronized cyclic iminoethers forming polymers that self‐organize soft Frank–Kasper and quasicrystal periodic and quasiperiodic arrays. These two fields represent frontiers in macromolecular and supramolecular science. A brief discussion of the impact of this polymerization on biomaterials and how it impacted contemporary mechanistic investigations is also made. Expected impacts via future synthetic developments and mechanistic investigations are discussed.
more »
« less
- Award ID(s):
- 2104554
- PAR ID:
- 10552126
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Chemistry and Physics
- Volume:
- 226
- Issue:
- 7
- ISSN:
- 1022-1352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Transforming renewable resources into functional and degradable polymers is driven by the ever‐increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence‐defined copolymers from one‐pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers’ performances. Among many polymerization strategies, ring‐opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one‐pot, sequence‐controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence‐controlled ring‐opening copolymerization.more » « less
-
Abstract Biobased poly(γ-methyl-α-methylene-γ-butyrolactone) (PMMBL), an acrylic polymer bearing a cyclic lactone ring, has attracted increasing interest because it not only is biorenewable but also exhibits superior properties to petroleum-based linear analog poly(methyl methacrylate) (PMMA). However, such property enhancement has been limited to resistance to heat and solvent, and mechanically both types of polymers are equally brittle. Here we report the expeditious synthesis of well-defined PMMBL-based ABA tri-block copolymers (tri-BCPs)—enabled by dual-initiating and living frustrated Lewis pairs (FLPs)—which are thermoplastic elastomers showing much superior mechanical properties, especially at high working temperatures (80–130 °C), to those of PMMA-based tri-BCPs. The FLPs consist of a bulky organoaluminum Lewis acid and a series of newly designed bis(imino)phosphine superbases bridged by an alkyl linker, which promote living polymerization of MMBL. Uniquely, such bisphosphine superbases initiate the chain growth from both P-sites concurrently, enabling the accelerated synthesis of tri-BCPs in a one-pot, two-step procedure. The results from mechanistic studies, including the single crystal structure of the dually initiated active species, detailed polymerizations, and kinetic studies confirm the livingness of the polymerization and support the proposed polymerization mechanism featuring the dual initiation and subsequent chain growth from both P-sites of the superbase di-initiator.more » « less
-
Abstract Linear poly(α‐hydroxy acids) are important degradable polymers, and they can be efficiently prepared by ring‐opening polymerization of O‐carboxyanhydrides with pendant functional groups. However, attempts to prepare cyclic poly(α‐hydroxy acids) have been plagued by side reactions, including epimerization and uncontrolled intramolecular chain transfers or termination, that prevent the synthesis of high‐molecular‐weight stereoregular cyclic polyesters. Herein, we report a scalable method for the synthesis of high‐molecular‐weight (>100 kDa) stereoregular functionalized cyclic poly(α‐hydroxy acids) by means of controlled polymerization of O‐carboxyanhydrides using a catalytic system consisting of a lanthanum complex with a sterically bulky ligand and a manganese silylamide. Additionally, using this system, we could readily prepare cyclic block poly(α‐hydroxy acids) by means of sequential addition of O‐carboxyanhydrides. The obtained cyclic polyesters and their cyclic block copolyesters exhibit distinctive physicochemical properties—including elevated phase transition temperature, improved toughness, and reduced viscosity—compared to their linear counterparts.more » « less
-
Molecular strain can be introduced to influence the outcome of chemical reactions. Once a thermodynamic product is formed, however, reversing the course of a strain-promoted reaction is challenging. Here, a reversible, strain-promoted polymerization in cyclic DNA is reported. The use of nonhybridizing, single-stranded spacers as short as a single nucleotide in length can promote DNA cyclization. Molecular strain is generated by duplexing the spacers, leading to ring opening and subsequent polymerization. Then, removal of the strain-generating duplexers triggers depolymerization and cyclic dimer recovery via enthalpy-driven cyclization and entropy-mediated ring contraction. This reversibility is retained even when a protein is conjugated to the DNA strands, and the architecture of the protein assemblies can be modulated between bivalent and polyvalent states. This work underscores the utility of using DNA not only as a programmable ligand for assembly but also as a route to access restorable bonds, thus providing a molecular basis for DNA-based materials with shape-memory, self-healing, and stimuli-responsive properties.more » « less
An official website of the United States government
