This content will become publicly available on July 17, 2025
The stein variational gradient descent (SVGD) algorithm is a deterministic particle method for sampling. However, a mean-field analysis reveals that the gradient flow corresponding to the SVGD algorithm (i.e., the Stein Variational Gradient Flow) only provides a constant-order approximation to the Wasserstein gradient flow corresponding to the KL-divergence minimization. In this work, we propose the Regularized Stein Variational Gradient Flow, which interpolates between the Stein Variational Gradient Flow and the Wasserstein gradient flow. We establish various theoretical properties of the Regularized Stein Variational Gradient Flow (and its time-discretization) including convergence to equilibrium, existence and uniqueness of weak solutions, and stability of the solutions. We provide preliminary numerical evidence of the improved performance offered by the regularization.
more » « less- PAR ID:
- 10552223
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Foundations of Computational Mathematics
- ISSN:
- 1615-3375
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Finding diverse and representative Pareto solutions from the Pareto front is a key challenge in multi-objective optimization (MOO). In this work, we propose a novel gradient-based algorithm for profiling Pareto front by using Stein variational gradient descent (SVGD). We also provide a counterpart of our method based on Langevin dynamics. Our methods iteratively update a set of points in a parallel fashion to push them towards the Pareto front using multiple gradient descent, while encouraging the diversity between the particles by using the repulsive force mechanism in SVGD, or diffusion noise in Langevin dynamics. Compared with existing gradient-based methods that require predefined preference functions, our method can work efficiently in high dimensional problems, and can obtain more diverse solutions evenly distributed in the Pareto front. Moreover, our methods are theoretically guaranteed to converge to the Pareto front. We demonstrate the effectiveness of our method, especially the SVGD algorithm, through extensive experiments, showing its superiority over existing gradient-based algorithms.more » « less
-
Stein variational gradient descent (SVGD) is a particle-based inference algorithm that leverages gradient information for efficient approximate inference. In this work, we enhance SVGD by leveraging preconditioning matrices, such as the Hessian and Fisher information matrix, to incorporate geometric information into SVGD updates. We achieve this by presenting a generalization of SVGD that replaces the scalar-valued kernels in vanilla SVGD with more general matrix-valued kernels. This yields a significant extension of SVGD, and more importantly, allows us to flexibly incorporate various preconditioning matrices to accelerate the exploration in the probability landscape. Empirical results show that our method outperforms vanilla SVGD and a variety of baseline approaches over a range of real-world Bayesian inference tasks.more » « less
-
Gradient-based approximate inference methods, such as Stein variational gradient descent (SVGD), provide simple and general-purpose inference engines for differentiable continuous distributions. However, existing forms of SVGD cannot be directly applied to discrete distributions. In this work, we fill this gap by proposing a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions, on which the gradient-free SVGD is applied to perform efficient approximate inference. The empirical results show that our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo on various challenging benchmarks of discrete graphical models. We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN), outperforming other widely used ensemble methods on learning binarized AlexNet on CIFAR-10 dataset. In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions. Our proposed method outperforms existing GOF test methods for intractable discrete distributions.more » « less
-
Diversification has been shown to be a powerful mechanism for learning robust models in non- convex settings. A notable example is learning mixture models, in which enforcing diversity between the different mixture components allows us to prevent the model collapsing phenomenon and capture more patterns from the observed data. In this work, we present a variational approach for diversity-promoting learning, which leverages the entropy functional as a natural mechanism for enforcing diversity. We develop a simple and efficient functional gradient-based algorithm for optimizing the variational objective function, which provides a significant generalization of Stein variational gradient descent (SVGD). We test our method on various challenging real world problems, including deep embedded clustering and deep anomaly detection. Empirical results show that our method provides an effective mechanism for diversity-promoting learning, achieving substantial improvement over existing methods.more » « less
-
Batch Bayesian optimization has been shown to be an efficient and successful approach for black-box function optimization, especially when the evaluation of cost function is highly expensive but can be efficiently parallelized. In this paper, we introduce a novel variational framework for batch query optimization, based on the argument that the query batch should be selected to have both high diversity and good worst case performance. This motivates us to introduce a variational objective that combines a quantile-based risk measure (for worst case performance) and entropy regularization (for enforcing diversity). We derive a gradient-based particle-based algorithm for solving our quantile-based variational objective, which generalizes Stein variational gradient descent (SVGD). We evaluate our method on a number of real-world applications and show that it consistently outperforms other recent state-of-the-art batch Bayesian optimization methods. Extensive experimental results indicate that our method achieves better or comparable performance, compared to the existing methods.more » « less