Abstract Bubble chambers using liquid xenon (and liquid argon) have been operated (resp. planned) by the Scintillating Bubble Chamber (SBC) collaboration for GeV-scale dark matter searches and CE ν NS from reactors. This will require a robust calibration program of the nucleation efficiency of low-energy nuclear recoils in these target media. Such a program has been carried out by the PICO collaboration, which aims to directly detect dark matter using C 3 F 8 bubble chambers. Neutron calibration data from mono-energetic neutron beam and Am-Be source has been collected and analyzed, leading to a global fit of a generic nucleation efficiency model for carbon and fluorine recoils, at thermodynamic thresholds of 2.45 and 3.29 keV. Fitting the many-dimensional model to the data (34 free parameters) is a non-trivial computational challenge, addressed with a custom Markov Chain Monte Carlo approach, which will be presented. Parametric MC studies undertaken to validate this methodology are also discussed. This fit paradigm demonstrated for the PICO calibration will be applied to existing and future scintillating bubble chamber calibration data.
more »
« less
Search for inelastic dark matter-nucleus scattering with the PICO-60 CF3I and C3F8 bubble chambers
PICO bubble chambers have exceptional sensitivity to inelastic dark matter-nucleus interactions due to a combination of their extended nuclear recoil energy detection window from a few keV to O(100 keV) or more and the use of iodine as a heavy target. Inelastic dark matter-nucleus scattering is interesting for studying the properties of dark matter, where many theoretical scenarios have been developed. This study reports the results of a search for dark matter inelastic scattering with the PICO-60 bubble chambers. The analysis reported here comprises physics runs from PICO-60 bubble chambers using CF3I and C3F8. The CF3I run consisted of 36.8 kg of CF3I reaching an exposure of 3415 kg-day operating at thermodynamic thresholds between 7 and 20 keV. The C3F8 runs consisted of 52 kg of C3F8 reaching exposures of 1404 kg-day and 1167 kg-day running at thermodynamic thresholds of 2.45 keV and 3.29 keV, respectively. The analysis disfavors various scenarios, in a wide region of parameter space, that provide a feasible explanation of the signal observed by DAMA, assuming an inelastic interaction, considering that the PICO CF3I bubble chamber used iodine as the target material.
more »
« less
- Award ID(s):
- 2209459
- PAR ID:
- 10552282
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 108
- Issue:
- 6
- ISSN:
- 2470-0010
- Page Range / eLocation ID:
- 062003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Baracchini, Elisabetta (Ed.)The Scintillating Bubble Chamber (SBC) collaboration is developing liquid-noble bubble chambers for the detection of sub-keV nuclear recoils. These detectors benefit from the electron recoil rejection inherent in moderately-superheated bubble chambers with the addition of energy reconstruction provided from the scintillation signal. The ability to measure low-energy nuclear recoils allows the search for GeV-scale dark matter and the measurement of coherent elastic neutrino-nucleus scattering on argon from MeV-scale reactor antineutrinos. The first physics-scale detector, SBC-LAr10, is in the commissioning phase at Fermilab, where extensive engineering and calibration studies will be performed. In parallel, a functionally identical low-background version, SBC-SNOLAB, is being built for a dark matter search underground at SNOLAB. SBC-SNOLAB, with a 10 kg-yr exposure, will have sensitivity to a dark matter–nucleon cross section of 2×10−42 cm2 at 1 GeV/c2 dark matter mass, and future detectors could reach the boundary of the argon neutrino fog with a tonne-yr exposure. In addition, the deployment of an SBC detector at a nuclear reactor could enable neutrino physics investigations including measurements of the weak mixing angle and searches for sterile neutrinos, the neutrino magnetic moment, and the light Z’ gauge boson.more » « less
-
Wurtzite ferroelectrics are attractive for microelectronics applications due to their chemical and structural compatibility with wurtzite semiconductors, such as and . However, the leakage current in epitaxial stacks reported to date should be reduced for reliable device operation. Here, we demonstrate low leakage current in epitaxial films on with well-saturated ferroelectric hysteresis loops that are orders of magnitude lower (i.e., 0.07 A ) than previously reported films (1–19 A ) having similar or better structural characteristics. We also show that, for these high-quality epitaxial films, structural quality (edge and screw dislocations), as measured by diffraction techniques, is not the dominant contributor to leakage. Instead, the small leakage in our films is limited by thermionic emission across the interfaces, which is distinct from the large leakage due to trap-mediated bulk transport in the previously reported films. To support this conclusion, we show that on lattice-matched buffers with improved structural characteristics but higher interface roughness exhibit increased leakage characteristics. This demonstration of low leakage current in heteroepitaxial films and understanding of the importance of interface barrier and surface roughness can guide further efforts toward improving the reliability of wurtzite ferroelectric devices. Published by the American Physical Society2025more » « less