G106.3+2.7, commonly considered to be a composite supernova remnant (SNR), is characterized by a boomerang-shaped pulsar wind nebula (PWN) and two distinct (“head” and “tail”) regions in the radio band. A discovery of very-high-energy gamma-ray emission (
This content will become publicly available on October 1, 2025
We present the most precise measurements to date for the spatial extension and energy spectrum of the
- Award ID(s):
- 1914549
- PAR ID:
- 10552324
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 974
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 246
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract E γ > 100 GeV) followed by the recent detection of ultrahigh-energy gamma-ray emission (E γ > 100 TeV) from the tail region suggests that G106.3+2.7 is a PeVatron candidate. We present a comprehensive multiwavelength study of the Boomerang PWN (100″ around PSR J2229+6114) using archival radio and Chandra data obtained two decades ago, a new NuSTAR X-ray observation from 2020, and upper limits on gamma-ray fluxes obtained by Fermi-LAT and VERITAS observatories. The NuSTAR observation allowed us to detect a 51.67 ms spin period from the pulsar PSR J2229+6114 and the PWN emission characterized by a power-law model with Γ = 1.52 ± 0.06 up to 20 keV. Contrary to the previous radio study by Kothes et al., we prefer a much lower PWNB -field (B ∼ 3μ G) and larger distance (d ∼ 8 kpc) based on (1) the nonvarying X-ray flux over the last two decades, (2) the energy-dependent X-ray size of the PWN resulting from synchrotron burn-off, and (3) the multiwavelength spectral energy distribution (SED) data. Our SED model suggests that the PWN is currently re-expanding after being compressed by the SNR reverse shock ∼1000 yr ago. In this case, the head region should be formed by GeV–TeV electrons injected earlier by the pulsar propagating into the low-density environment. -
Abstract Galactic PeV cosmic-ray accelerators (PeVatrons) are Galactic sources theorized to accelerate cosmic rays up to PeV in energy. The accelerated cosmic rays are expected to interact hadronically with nearby ambient gas or the interstellar medium, resulting in γ -rays and neutrinos. Recently, the Large High Altitude Air Shower Observatory (LHAASO) identified 12 γ -ray sources with emissions above 100 TeV, making them candidates for PeVatrons. While at these high energies the Klein–Nishina effect exponentially suppresses leptonic emission from Galactic sources, evidence for neutrino emission would unequivocally confirm hadronic acceleration. Here, we present the results of a search for neutrinos from these γ -ray sources and stacking searches testing for excess neutrino emission from all 12 sources as well as their subcatalogs of supernova remnants and pulsar wind nebulae with 11 yr of track events from the IceCube Neutrino Observatory. No significant emissions were found. Based on the resulting limits, we place constraints on the fraction of γ -ray flux originating from the hadronic processes in the Crab Nebula and LHAASO J2226+6057.more » « less
-
Abstract This paper investigates the origin of the
γ -ray emission from MGRO J1908+06 in the GeV–TeV energy band. By analyzing the data collected by the Fermi Large Area Telescope, the Very Energetic Radiation Imaging Telescope Array System, and High Altitude Water Cherenkov, with the addition of spectral data previously reported by LHAASO, a multiwavelength study of the morphological and spectral features of MGRO J1908+06 provides insight into the origin of theγ -ray emission. The mechanism behind the bright TeV emission is studied by constraining the magnetic field strength, the source age, and the distance through detailed broadband modeling. Both spectral shape and energy-dependent morphology support the scenario that inverse Compton emission of an evolved pulsar wind nebula associated with PSR J1907+0602 is responsible for the MGRO J1908+06γ -ray emission with a best-fit true age ofT = 22 ± 9 kyr and a magnetic field ofB = 5.4 ± 0.8μ G, assuming the distance to the pulsard PSR= 3.2 kpc. -
Abstract The latest High Altitude Water Cherenkov (HAWC) point-like source catalog up to 56 TeV reported the detection of two sources in the region of the Galactic plane at galactic longitude 52° < ℓ < 55°, 3HWC J1930+188 and 3HWC J1928+178. The first one is associated with a known TeV source, the supernova remnant SNR G054.1+00.3. It was discovered by one of the currently operating Imaging Atmospheric Cherenkov Telescope (IACT), the Very Energetic Radiation Imaging Telescope Array System (VERITAS), detected by the High Energy Stereoscopic System (H.E.S.S), and identified as a composite SNR. However, the source 3HWC J1928+178, discovered by HAWC and coincident with the pulsar PSR J1928+1746, was not detected by any IACT despite their long exposure on the region, until a recent new analysis of H.E.S.S. data was able to confirm it. Moreover, no X-ray counterpart has been detected from this pulsar. We present a multicomponent fit of this region using the latest HAWC data. This reveals an additional new source, HAWC J1932+192, which is potentially associated with the pulsar PSR J1932+1916, whose γ -ray emission could come from the acceleration of particles in its pulsar wind nebula. In the case of 3HWC J1928+178, several possible explanations are explored, in an attempt to unveil the origins of the very-high-energy γ -ray emission.more » « less
-
Abstract Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays (CRs), ultra-relativistic protons, and electrons, interacting with gas and electromagnetic radiation fields in the interstellar medium. Here we present the analysis of teraelectronvolt diffuse emission from a region of the Galactic plane over the range in longitude of
l ∈ [43°, 73°], using data collected with the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal, and latitudinal distributions of the teraelectronvolt diffuse emission are shown. The radiation spectrum is compatible with the spectrum of the emission arising from a CR population with anindex similar to that of the observed CRs. When comparing with theDRAGON base model , the HAWC GDE flux is higher by about a factor of 2. Unresolved sources such as pulsar wind nebulae and teraelectronvolt halos could explain the excess emission. Finally, deviations of the Galactic CR flux from the locally measured CR flux may additionally explain the difference between the predicted and measured diffuse fluxes.