Abstract Pulsar halos are regions around middle-aged pulsars extending out to tens of parsecs. The large extent of the halos and well-defined central cosmic-ray accelerators make this new class of Galactic sources an ideal laboratory for studying cosmic-ray transport. LHAASO J0621+3755 is a candidate pulsar halo associated with the middle-aged gamma-ray pulsar PSR J0622+3749. We observed LHAASO J0621+3755 with VERITAS and XMM-Newton in the TeV and X-ray bands, respectively. For this work, we developed a novel background estimation technique for imaging atmospheric Cherenkov telescope observations of such extended sources. No halo emission was detected with VERITAS (0.3–10 TeV) or XMM-Newton (2–7 keV) within 1∘and around PSR J0622+3749, respectively. Combined with the LHAASO Kilometer Square Array (KM2A) and Fermi-LAT data, VERITAS flux upper limits establish a spectral break at ∼1–10 TeV, a unique feature compared with Geminga, the most studied pulsar halo. We model the gamma-ray spectrum and LHAASO-KM2A surface brightness as inverse Compton emission and find suppressed diffusion around the pulsar, similar to Geminga. A smaller diffusion suppression zone and harder electron injection spectrum than Geminga are necessary to reproduce the spectral cutoff. A magnetic field ≤1μG is required by our XMM-Newton observation and synchrotron spectral modeling, consistent with Geminga. Our findings support slower diffusion and lower magnetic field around pulsar halos than the Galactic averages, hinting at magnetohydrodynamic turbulence around pulsars. Additionally, we report the detection of an X-ray point source spatially coincident with PSR J0622+3749, whose periodicity is consistent with the gamma-ray spin period of 333.2 ms. The soft spectrum of this source suggests a thermal origin.
more »
« less
Geminga’s pulsar halo: An X-ray view
Geminga is the first pulsar around which a remarkable gamma-ray halo extending over a few degrees was discovered at TeV energies by MILAGRO and HAWC and later by H.E.S.S., and byFermi-LAT in the GeV band. More middle-aged pulsars have exhibited gamma-ray halos, and they are now recognised as an emerging class of Galactic gamma-ray sources. The emission appears in the late evolution stage of pulsars, and is most plausibly explained by inverse Compton scattering of CMB and interstellar photons by relativistic electrons and positrons escaping from the pulsar wind nebulae. These observations pose a number of theoretical challenges, particularly the origin of the inferred, significantly lower effective diffusion coefficients around the pulsar when compared to typical Galactic values. Tackling these questions requires constraining the ambient magnetic field properties, which can be achieved through X-ray observations. If the gamma-ray halos originate from a distribution of highly energetic electrons, synchrotron losses in the ambient magnetic fields of the same particles are expected to produce a diffuse X-ray emission with a similar spatial extension. We present the most comprehensive X-ray study of the Geminga pulsar halo to date, utilising archival data fromXMM-NewtonandNuSTAR. Our X-ray analysis covers a broad bandwidth (0.5 − 79 keV) and large field of view (θ ∼ 4°) for the first time. This was achieved by accurately measuring the background over the entire field of view, and taking into account both focused and stray-light X-ray photons from the pulsar halo withNuSTAR. We find no significant emission and set robust constraints on the X-ray halo flux. These are translated to stringent constraints on the ambient magnetic field strength and the diffusion coefficient by using a physical model considering particle injection, diffusion, and cooling over the pulsar’s lifetime, which is tuned by fitting multi-wavelength data. Our novel methodology for modelling and searching for synchrotron X-ray halos can be applied to other pulsar halo candidates.
more »
« less
- Award ID(s):
- 2110497
- PAR ID:
- 10640954
- Publisher / Repository:
- Astronomy & Astrophysics
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 689
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the most precise measurements to date for the spatial extension and energy spectrum of theγ-ray region between a pulsar’s wind nebula and the interstellar medium, better known as the halo, present around Geminga and PSR B0656+14 (Monogem) using ∼2398 days of >1 TeV data collected by the HAWC observatory. We interpret the data using a physically motivated model for the diffuseγ-ray emission generated from positrons and electrons (e±) injected by the pulsar wind nebula and inverse Compton scattering with interstellar radiation fields. We find the morphologies of the regions inside these halos are characterized by an inhibited diffusion that are approximately three orders of magnitudes smaller than the Galactic average. We also obtain the e±emission efficiencies of 6.6% and 5.1%, respectively, for Geminga and Monogem. These results have remarkable consequences for the study of the particle diffusion in the region between the pulsar wind nebulae and the interstellar medium, and for the interpretation of the flux of positrons measured by the AMS-02 experiment above 10 GeV.more » « less
-
Abstract G106.3+2.7, commonly considered to be a composite supernova remnant (SNR), is characterized by a boomerang-shaped pulsar wind nebula (PWN) and two distinct (“head” and “tail”) regions in the radio band. A discovery of very-high-energy gamma-ray emission (Eγ> 100 GeV) followed by the recent detection of ultrahigh-energy gamma-ray emission (Eγ> 100 TeV) from the tail region suggests that G106.3+2.7 is a PeVatron candidate. We present a comprehensive multiwavelength study of the Boomerang PWN (100″ around PSR J2229+6114) using archival radio and Chandra data obtained two decades ago, a new NuSTAR X-ray observation from 2020, and upper limits on gamma-ray fluxes obtained by Fermi-LAT and VERITAS observatories. The NuSTAR observation allowed us to detect a 51.67 ms spin period from the pulsar PSR J2229+6114 and the PWN emission characterized by a power-law model with Γ = 1.52 ± 0.06 up to 20 keV. Contrary to the previous radio study by Kothes et al., we prefer a much lower PWNB-field (B∼ 3μG) and larger distance (d∼ 8 kpc) based on (1) the nonvarying X-ray flux over the last two decades, (2) the energy-dependent X-ray size of the PWN resulting from synchrotron burn-off, and (3) the multiwavelength spectral energy distribution (SED) data. Our SED model suggests that the PWN is currently re-expanding after being compressed by the SNR reverse shock ∼1000 yr ago. In this case, the head region should be formed by GeV–TeV electrons injected earlier by the pulsar propagating into the low-density environment.more » « less
-
Abstract Extended very-high-energy (VHE; 0.1–100 TeV) γ -ray emission has been observed around several middle-aged pulsars and referred to as “TeV halos.” Their formation mechanism remains under debate. It is also unknown whether they are ubiquitous or related to a certain subgroup of pulsars. With 2321 days of observation, the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory detected VHE γ -ray emission at the location of the radio-quiet pulsar PSR J0359+5414 with >6 σ significance. By performing likelihood tests with different spectral and spatial models and comparing the TeV spectrum with multiwavelength observations of nearby sources, we show that this excess is consistent with a TeV halo associated with PSR J0359+5414, though future observation of HAWC and multiwavelength follow-ups are needed to confirm this nature. This new halo candidate is located in a noncrowded region in the outer galaxy. It shares similar properties to the other halos but its pulsar is younger and radio-quiet. Our observation implies that TeV halos could commonly exist around pulsars and their formation does not depend on the configuration of the pulsar magnetosphere.more » « less
-
ABSTRACT Spider pulsars are compact binary systems composed of a millisecond pulsar and a low-mass companion. Their X-ray emission – modulated on the orbital period – is interpreted as synchrotron radiation from high-energy electrons accelerated at the intrabinary shock. We perform global two-dimensional particle-in-cell simulations of the intrabinary shock, assuming that the shock wraps around the companion star. When the pulsar spin axis is nearly aligned with the orbital angular momentum, we find that the magnetic energy of the relativistic pulsar wind – composed of magnetic stripes of alternating field polarity – efficiently converts to particle energy at the intrabinary shock, via shock-driven reconnection. The highest energy particles accelerated by reconnection can stream ahead of the shock and be further accelerated by the upstream motional electric field. In the downstream, further energization is governed by stochastic interactions with the plasmoids/magnetic islands generated by reconnection. We also extend our earlier work by performing simulations that have a larger (and more realistic) companion size and a more strongly magnetized pulsar wind. We confirm that our first-principles synchrotron spectra and light curves are in good agreement with X-ray observations.more » « less
An official website of the United States government

