ABSTRACT Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644
more »
« less
Enthalpy relaxation of sodium aluminosilicate glasses from thermal analysis
Abstract The sodium aluminosilicate (NAS) glass family is important for many different industrial applications, but glass relaxation has not yet been thoroughly studied in this system. Thermal analysis techniques such as differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) can provide insight into the enthalpy relaxation of glass by measuring the glass transition temperature (Tg), activation energy, and enthalpy of relaxation. MDSC is mostly used to study nonoxide and lowTgglasses, and there is much debate about whether the nonreversing heat flow analysis method is accurate. To the authors’ knowledge, this is the first paper using MDSC to study these NAS compositions, and one of few papers to report MDSC on highTgoxide glasses. We report on one set of modulation conditions that obtain a linear response using Lissajous curves, as well as comparing the activation energy calculated from DSC with the enthalpy of relaxation obtained from MDSC. Our results show that the activation energy and enthalpy of relaxation do not give the same compositional minimum in relaxation, and therefore more work is needed to investigate the validity of the nonreversing heat flow approach for highTgoxide glasses.
more »
« less
- Award ID(s):
- 1928546
- PAR ID:
- 10552327
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- International Journal of Applied Glass Science
- ISSN:
- 2041-1286
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The preparation of 0.58 Li2S + 0.315 SiS2+ 0.105 LiPO3glass, and the impacts of polysulfide and P1Pdefect structure impurities on the glass transition temperature (Tg), crystallization temperature (Tc), working range (ΔT≡ Tc‐ Tg), fragility index, and the Raman spectra were evaluated using statistical analysis. In this study, 33 samples of this glass composition were synthesized through melt‐quenching. Thermal analysis was conducted to determine the glass transition temperature, crystallization temperature, working range, and fragility index through differential scanning calorimetry. The quantity of the impurities described above was determined through Raman spectroscopy peak analysis. Elemental sulfur was doped into a glass to quantify the wt% sulfur content in the glasses. Linear regression analysis was conducted to determine the impact of polysulfide impurities and P1Pdefect impurities on the thermal properties. Polysulfide impurities were found to decrease theTgat rate of nearly 12°C per 1 wt% increase in sulfur concentration. The sulfur concentration does not have a statistically significant impact on the other properties (α = 0.05). The P1Pdefect structure appears to decrease the resistance to crystallization of the glass by measurably decreasing the working range of the glasses, but further study is necessary to fully quantify and determine this.more » « less
-
Abstract In this study, the first fabrication of phase‐shifted Bragg gratings utilizing chalcogenide hybrid inorganic/organic polymers (CHIPs) is presented based on poly(sulfur‐random‐(1,3‐isopropenylbenzene) to measure the thermo‐optic coefficient (TOC) of this new class of optical polymers. The unique properties ofCHIPs, such as high index contrast and low optical losses, are leveraged to fabricate Bragg gratings that enable precise determination of the TOC and glass transition temperature (Tg) of these polymers. The optical measurement introduces a novel technique to measure the TOC and Tgof optical polymers which can be difficult to determine using traditional methods such as differential scanning calorimetry (DSC) after fabrication into photonic device constructs. The findings demonstrate thatCHIPs exhibit low thermo‐optic (TO) effects, making them exceptionally well‐suited for the development of thermally stable photonic integrated circuits.more » « less
-
Abstract The synthesis and characterization of a series of polyurethane ionenes using a non‐isocyanate approach is disclosed. Imidazole‐capped, urethane‐containing prepolymers are prepared by first reacting carbonyl diimidazole (CDI) with several poly(propylene glycol) (PPG) diols with variable molecular weight, followed by subsequent reaction with 3‐aminopropylimidazole (API). Polymerization with 1,4‐dibromomethylbenzene followed by anion exchange resulted in the desired polyurethane ionenes bearing the [NTf2] counteranion as a series of viscous liquids. NMR and FTIR spectroscopy are used to characterize the intermediates and final ionenes, including molecular weight determination by end‐group analysis. A single glass transition temperature (Tg), as determined by differential scanning calorimetry (DSC), is observed for each ionene (−38 to −64 °C) with theTgdecreasing with increasing PPG molecular weight. Thermogravimetric analysis (TGA) indicated a two‐step decomposition for each ionene, with the first being degradation of the PPG segment, followed by the urethane/ionic segment. Microphase separation is observed from x‐ray scattering profiles with Bragg distances that increased with increasing PPG molecular weight. Ionic conductivity is found to be inversely dependent upon DSCTgat lower temperatures (RT and below); however, at higher temperatures, conductivity appears to be more dependent upon the ability of ionic aggregates caused by phase separation to interact.more » « less
-
Dynamic heterogeneity is a fundamental characteristic of glasses and undercooled liquids. The heterogeneous nature causes some of the key features of systems’ dynamics such as the temperature dependence of nonexponentiality and spatial enthalpy fluctuations. Commonly used phenomenological models such as Tool–Narayanaswamy–Moynihan (TNM) and Kovacs–Aklonis–Hutchinson–Ramos fail to fully capture this phenomenon. Here we propose a model that can predict the temperature-dependent nonexponential behavior observed in glass-forming liquids and glasses by fitting standard differential scanning calorimetry curves. This model extends the TNM framework of structural relaxation by introducing a distribution of equilibrium fictive temperature (Tfe) that accounts for heterogeneity in the undercooled liquid. This distribution is then frozen at the glass transition to account for the heterogeneous nature of the glass dynamics. The nonexponentiality parameter βKWW is obtained as a function of temperature by fitting the Kohlrauch-Williams-Watts (KWW) equation to the calculated relaxation function for various organic and inorganic undercooled liquids and glasses. The calculated temperature dependent βKWW shows good agreement with the experimental ones. We successfully model the relaxation dynamics far from equilibrium for two silicate systems that the TNM model fails to describe, confirming that temperature dependent nonexponentiality is necessary to fully describe these dynamics. The model also simulates the fluctuation of fictive temperature δTf during isothermal annealing with good qualitative agreement with the evolution of enthalpy fluctuation reported in the literature. We find that the evolution of enthalpy fluctuation during isothermal annealing heavily depends on the cooling rate, a dependence that was not previously emphasized.more » « less
An official website of the United States government

