New field observations and 40 Ar/ 39 Ar geochronology reveal that the Topernawi Formation of the Ekitale Basin, northern Turkana Depression, Turkana County, Kenya was deposited entirely during the Oligocene between 29.7 ± 0.5 Ma and 29.24 ± 0.08 Ma. These bracketing ages are determined via new 40 Ar/ 39 Ar geochronology on a basaltic lava flow at the base of the section and a felsic ignimbrite near the top. A newly discovered basal unit and interbedded lava flow result in a new total sedimentary thickness of 92 m. The Topernawi Formation is the oldest dated syn-rift sedimentary section in the northern Turkana Depression.
more »
« less
New Discovery of Oligocene Strata in the Topernawi Formation, Turkana County, Kenya
New field observations and 40 Ar/ 39 Ar geochronology reveal that the Topernawi Formation of the Ekitale Basin, northern Turkana Depression, Turkana County, Kenya was deposited entirely during the Oligocene between 29.7 ± 0.5 Ma and 29.24 ± 0.08 Ma. These bracketing ages are determined via new 40 Ar/ 39 Ar geochronology on a basaltic lava flow at the base of the section and a felsic ignimbrite near the top. A newly discovered basal unit and interbedded lava flow result in a new total sedimentary thickness of 92 m. The Topernawi Formation is the oldest dated syn-rift sedimentary section in the northern Turkana Depression.
more »
« less
- Award ID(s):
- 2437782
- PAR ID:
- 10552372
- Publisher / Repository:
- Frontiers in Earth Science
- Date Published:
- Journal Name:
- Frontiers in earth sciences
- Volume:
- 10
- ISSN:
- 1863-4621
- Page Range / eLocation ID:
- 1-9
- Subject(s) / Keyword(s):
- East Africa Rift system Oligocene hominid evolution stratigraphy geochronology Turkana Basin Turkana Depression
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Improvements in analytical procedures in parallel with intercalibration of40Ar/39Ar and U–Pb methods and laboratories, spurred since 2003 by the EarthTime geochronology community initiative, have led to ±2σuncertainties of the order of 50–100 ka, or better, for Cretaceous ash beds. Assembled here are 5740Ar/39Ar ages and 17238U–206Pb ages of volcanic ash beds in strata of the Western Interior Basin of North America determined during the last 15 years since these improvements have been made. These age determinations span from 108 Ma in the middle Albian to 66 Ma in the latest Maastrichtian. Five of the40Ar/39Ar ages from Campanian and Maastrichtian strata are newly reported here, whereas the remainder are from the literature. Building on the pioneering work of John Obradovich and Bill Cobban, where possible these age determinations are tied to ammonite and inoceramid biostratigraphy. For most ash beds, the temporal uncertainties, unlike earlier timescales for the Western Interior Basin, are much shorter than the duration of fossil biozones. Proposed ages for stage boundaries based on this review of the radioisotopic ages include: Maastrichtian–Danian, 66.02 ± 0.08 Ma; Campanian–Maastrichtian, 72.20 ± 0.20 Ma; Santonian–Campanian, 84.19 ± 0.38 Ma; Coniacian–Santonian, 86.49 ± 0.44 Ma; Turonian–Coniacian, 89.75 ± 0.38 Ma; Cenomanian–Turonian, 93.95 ± 0.05 Ma; Albian–Cenomanian, 100.00 ± 0.40 Ma. Six bentonites that occur within theVascoceras diartianum, Neocardiocerus juddi, Prionocylus macombi, Scaphites preventricosus, Scaphites depressusandDesmoscaphites bassleriammonite zones, dated using both40Ar/39Ar and U–Pb methods, yield ages in agreement to within 150 ka and form the backbone of the Western Interior Basin timescale. In parallel, improvements in the taxonomy of ammonites, inoceramids and foraminifera, and recent field work, are better establishing the biostratigraphic framework for these age determinations. Each of these efforts contributes to the progressive refinement of the chronostratigraphic framework of the Western Interior Basin, and enhances its utility for global correlation.more » « less
-
Abstract Deccan Traps flood basalt volcanism affected ecosystems spanning the end‐Cretaceous mass extinction, with the most significant environmental effects hypothesized to be a consequence of the largest eruptions. The Rajahmundry Traps are the farthest exposures (~1,000 km) of Deccan basalt from the putative eruptive centers in the Western Ghats and hence represent some of the largest volume Deccan eruptions. Although the three subaerial Rajahmundry lava flows have been geochemically correlated to the Wai Subgroup of the Deccan Traps, poor precision associated with previous radioisotopic age constraints has prevented detailed comparison with potential climate effects. In this study, we use new40Ar/39Ar dates, paleomagnetic and volcanological analyses, and biostratigraphic constraints for the Rajahmundry lava flows to ascertain the timing and style of their emplacement. We find that the lower and middle flows (65.92 ± 0.25 and 65.67 ± 0.08 Ma, ±1σsystematic uncertainty) were erupted within magnetochron C29r and were a part of the Ambenali Formation of the Deccan Traps. By contrast, the uppermost flow (65.27 ± 0.08 Ma) was erupted in C29n as part of the Mahabaleshwar Formation. Given these age constraints, the Rajahmundry flows were not involved in the end‐Cretaceous extinction as previously hypothesized. To determine whether the emplacement of the Rajahmundry flows could have affected global climate, we estimated their eruptive CO2release and corresponding climate change using scalings from the LOSCAR carbon cycle model. We find that the eruptive gas emissions of these flows were insufficient to directly cause multi‐degree warming; hence, a causal relationship with significant climate warming requires additional Earth system feedbacks.more » « less
-
Abstract Isla Santa Cruz is a volcanic island located in the central Galápagos Archipelago. The island’s northern and southern flanks are deformed by E–W-trending normal faults not observed on the younger Galápagos shields, and Santa Cruz lacks the large summit calderas that characterize those structures. To construct a chronology of volcanism and deformation on Santa Cruz, we employ40Ar/39Ar geochronology of lavas and3He exposure dating of fault scarps from across the island. The combination of Ar–Ar dating with in situ-produced cosmogenic exposure age data provides a powerful tool to evaluate fault chronologies. The40Ar/39Ar ages indicate that the island has been volcanically active since at least 1.62 ± 0.030 Ma (2SD). Volcanism deposited lavas over the entire island until ~ 200 ka, when it became focused along an E–W-trending summit vent system; all dated lavas < 200 ka were emplaced on the southern flank. Structural observations suggest that the island has experienced two major faulting episodes. Crosscutting relationships of lavas indicate that north flank faults formed after 1.16 ± 0.070 Ma, but likely before 416 ± 36 ka, whereas the faults on the southern flank of the island initiated between 201 ± 37 and 32.6 ± 4.6 ka, based on3He exposure dating of fault surfaces. The data are consistent with a model wherein the northeastern faults are associated with regional extension owing to the young volcano’s location closer to the Galápagos Spreading Center at the time. The second phase of volcanism is contemporaneous with the formation of the southern faults. The expression of this younger, low-volume volcanic phase was likely related to the elongate island morphology established during earlier deformation. The complex feedback between tectonic and volcanic processes responsible for southward spreading along the southern flank likely generated persistent E-W-oriented magmatic intrusions. The formation of the Galápagos Transform Fault and sea-level fluctuations may be the primary causes of eruptive and deformational episodes on Santa Cruz.more » « less
-
Abstract Ethiopia's Cenozoic flood basalt magmatism, uplift, and rifting have been attributed to one or more mantle plumes. The Nubian plate, however, has drifted 500–1,000 km north since initial magmatism at ∼45 Ma, having developed above mantle that now underlies the northern Tanzania craton and the low‐lying Turkana Depression. Unfortunately, our knowledge of mantle wavespeed structure and mantle transition zone (MTZ) topography below these regions is poorest, due to a historical lack of seismograph stations. The same data gap means we lack constraints on lithospheric structure in and around the NW–SE trending Mesozoic Anza rift. We exploit data from new seismograph networks in the Turkana Depression and neighboring northern Uganda to develop AFRP22, a new African absolute P‐wavespeed tomographic model that resolves whole mantle structure along the entire East African rift system. We also map MTZ thickness using Ps receiver functions. East Africa's thinnest MTZ (∼25 km thinning) underlies the northwest Turkana Depression. AFRP22 reveals a co‐located, previously unrecognized, slow wavespeed plume tail, extending from the MTZ, deep into the lower mantle. This plume may thus have contributed, along with the African Superplume, to the development of the 45–30 Ma flood basalt province that preceded extension. Pervasive sub‐lithospheric slow wavespeeds imply that Turkana's present‐day low elevation is explained best by Mesozoic and Cenozoic‐age crustal thinning. At ∼100 km depth, AFRP22 illuminates a fast wavespeed SE Ethiopian plateau. In addition to governing the northernmost limit of Mesozoic Anza rifting, the refractory nature of this lithospheric block likely minimized Cenozoic flood basalt magmatism there.more » « less
An official website of the United States government

