skip to main content


Title: Low-volume magmatism linked to flank deformation on Isla Santa Cruz, Galápagos Archipelago, using cosmogenic 3He exposure and 40Ar/39Ar dating of fault scarps and lavas
Abstract

Isla Santa Cruz is a volcanic island located in the central Galápagos Archipelago. The island’s northern and southern flanks are deformed by E–W-trending normal faults not observed on the younger Galápagos shields, and Santa Cruz lacks the large summit calderas that characterize those structures. To construct a chronology of volcanism and deformation on Santa Cruz, we employ40Ar/39Ar geochronology of lavas and3He exposure dating of fault scarps from across the island. The combination of Ar–Ar dating with in situ-produced cosmogenic exposure age data provides a powerful tool to evaluate fault chronologies. The40Ar/39Ar ages indicate that the island has been volcanically active since at least 1.62 ± 0.030 Ma (2SD). Volcanism deposited lavas over the entire island until ~ 200 ka, when it became focused along an E–W-trending summit vent system; all dated lavas < 200 ka were emplaced on the southern flank. Structural observations suggest that the island has experienced two major faulting episodes. Crosscutting relationships of lavas indicate that north flank faults formed after 1.16 ± 0.070 Ma, but likely before 416 ± 36 ka, whereas the faults on the southern flank of the island initiated between 201 ± 37 and 32.6 ± 4.6 ka, based on3He exposure dating of fault surfaces. The data are consistent with a model wherein the northeastern faults are associated with regional extension owing to the young volcano’s location closer to the Galápagos Spreading Center at the time. The second phase of volcanism is contemporaneous with the formation of the southern faults. The expression of this younger, low-volume volcanic phase was likely related to the elongate island morphology established during earlier deformation. The complex feedback between tectonic and volcanic processes responsible for southward spreading along the southern flank likely generated persistent E-W-oriented magmatic intrusions. The formation of the Galápagos Transform Fault and sea-level fluctuations may be the primary causes of eruptive and deformational episodes on Santa Cruz.

 
more » « less
NSF-PAR ID:
10370633
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Bulletin of Volcanology
Volume:
84
Issue:
9
ISSN:
1432-0819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Volcanic rocks of the Sierra San Francisco (SSF), in northern Baja California Sur, Mexico, record post-subduction magmatism related to slab melting and slab window opening. The range is composed of andesitic and dacitic domes, mafic lavas, and volcaniclastic deposits (debris and block-and-ash-flow, lahar, and fluvial) that constitute the proximal to distal facies of a volcanic field with local eruptive ages that postdate the regional transition from subduction to transtension. Lowest observed volcanic units consist of interbedded and hydrothermally altered mafic lavas, tuff breccias, and andesite/dacite domes. These are overlain by volcaniclastic units and dacite domes that erupted between ~11-10 Ma. Volcaniclastic deposits comprise a section up to 800 m thick, locally flank and dip radially away from domes, and are likely associated with dome collapse. These deposits are unconformably overlain by a series of ~5.5-4.5 Ma Mg-enriched basaltic andesites (bajaites) that typically erupted along NNW-trending normal faults. Low interbedded mafic lavas are chemically similar to syn-subduction lavas (>15 Ma) SE of the SSF, suggesting a typical subduction supraslab mantle source during waning, late Miocene Farallon plate subduction. ~11-10 Ma dacite domes and debris flow blocks display an adakitic geochemical signature, implying an origin involving late Miocene foundering and melting of the edges of the subducted Farallon plate during the opening of a slab window after the 12.3 Ma transition from subduction to transtension. Adakitic rocks of the SSF and the Santa Clara volcanic field 60 km to the SW may constrain the E-W extent of the slab window. The ~5.5-4.5 Ma bajaites display enriched REE and trace element patterns, potentially resulting from the rise of enriched subslab mantle through the slab window and interaction with supraslab mantle, previously metasomatized by slab melts. Thermal pulses associated with Gulf of California rifting may have provided the heat to generate Mg-rich magmas which ascended along rift-related faults, precluding significant crustal contamination or fractionation, and allowing magmas to retain their primitive character. Further analysis will elucidate the timing of slab window development and the post-subduction mantle processes that drove the chemical evolution of SSF magmas. 
    more » « less
  2. Abstract

    Volcanic seamount chains on the flanks of mid‐ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate withoutin situsampling and is further hampered by Ar40/Ar39dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast‐spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near‐bottom compressed high‐intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicleSentryare used to test the hypothesis that seamount volcanism is age‐progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass‐wasting and current activity, bathymetric relief andSentryvehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts' summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off‐axis for several million years.

     
    more » « less
  3. Many intraplate oceanic islands undergo “rejuvenated” volcanism following the main edifice-building stage. Honolulu features Hawaiʻi’s most recent rejuvenated volcanism. K-Ar dating of Honolulu volcanism suggests that it started at ca. 750 ka and ended at <100 ka. Here, we present new 40Ar/39Ar ages and olivine diffusion modeling from Koko Rift lavas to resolve when the most recent Honolulu eruptions occurred and to evaluate possible mechanisms of rejuvenated volcanism and volcanic hazards. Diffusion modeling of olivine zoning profiles in Koko Rift basalts suggests that magmas were stored in the crust for many months prior to eruption. Six new 40Ar/39Ar ages cluster at 67 ± 2 ka (2σ), which demonstrates that Koko Rift is Hawaiʻi’s youngest known area of rejuvenated volcanism. The timing of Koko Rift eruptions coincides with the pronounced drop in global sea level (∼100 m) during Marine Isotope Stage 4. This major sea-level fall may have triggered the eruptions of Koko Rift magmas that were stored in the crust for months to years at < 15 km depth. The proposed mechanism is similar to that at other volcanic islands, which suggests that changes in global sea level may have significant control on the magnitude and frequency of eruptions at ocean island volcanoes. 
    more » « less
  4. Late Cenozoic evolution of the Baja California (BC) peninsula governs its species diversity, with changes to terrestrial habitats and shorelines driven by volcanic and tectonic processes. New geologic mapping and geochronology in central BC help assess if recent landscape evolution created a barrier to gene flow. The NW-trending topographic divide of the BC peninsula near San Ignacio-Santa Rosalia (27.4N) is a low (400500 m asl), broad (2030 km-wide) pass. At the pass, ~2022-Ma volcaniclastic strata, mafic lavas, fluvial conglomerate, cross-bedded eolian sandstone, and a felsic tuff dip ~515 SW. Similar lithology and chronology suggest these strata correlate to the lower Comondu Group (CG). They are overlain by middle Miocene (~1114 Ma) mafic lavas with similar SW dips that overlap in age with the upper CG. NW of the pass, upper Miocene (~9.511 Ma) post-CG volcaniclastic strata and mafic lava flows are exposed in the Sierra San Francisco and dip ~10 SE on its SE flank, inclined differently than older SW-dipping CG at the pass. The basalt of Esperanza (~10 Ma) unconformably overlies the CG at and west of the pass. Its ~1 regional dip suggests that ~515 of SW tilting occurred prior to ~10 Ma in the footwall of the NW-striking Campamento fault, located at the base of the ~150 m-high rift escarpment. The N-striking Arroyo Yaqui fault, ~10 km E of the Campamento fault in a low-relief region capped by Quaternary marine strata, exposes crystalline basement in its footwall and may be a major rift margin structure. Thus the location, orientation, and age of the divide may be controlled by rift-related faulting and tilting plus beveling and lateral retreat of the escarpment. Pliocene tidal sediments occur up to ~200 m asl ~20 km west of the low pass similar to Pliocene marine strata east of the pass at ~300 m asl, indicating late Miocene to Pliocene subsidence was followed by >200 m of post-4 Ma uplift. Uplift was likely driven by transtensional faulting and possibly magmatic inflation by ~7090 km-wavelength domes. Further mapping will constrain the timing of vertical crustal motions and test whether the tidal embayment crossed the peninsula through this low pass, isolated species, and prevented terrestrial gene flow. Integration of geologic and genetic data will determine how volcano- tectonic processes shaped genetic diversity. 
    more » « less
  5. The Sierra San Francisco (SSF) is a Neogene volcanic range along the topographic crest of the Baja California peninsula in northern Baja California Sur, Mexico. The SSF is ~55 km long (NW-SE) and ~30 km wide and its highest peaks exceed 1500 m elevation. The SSF has a long history of volcanism and has been eroded by deep, rugged, radially-draining canyons. The development of SSF topography is intimately associated with the volcanic evolution of the range. The SSF is a large and complex dacitic adakite dome complex largely built of a thick, up to 800 m, stratigraphic succession of dacitic tuff breccias with minor interbedded basaltic andesite lavas. These deposits overlie rare exposures of aeolian sandstone of unknown age. The tuff breccias represent block-and-ash-flows and lahars generated from steep-sided peleean dacite and andesite domes, with three radiometric dates of 11-10 Ma. This intermediate sequence is unconformably capped by widespread bajaite mafic lavas, 5.5-4.5 Ma. SSF topography evolved dramatically since the late Miocene: 1) From 11-10 Ma, adakite domes erupted across the central SSF, locally along NNW faults. Thick sequences of bedded tuff breccias accumulated around the domes and are radially inclined away from source domes. The duration of this volcanism is unknown. 2) From 10-5 Ma, deep erosion of the pyroclastic strata formed a range-wide radial drainage network, with channel depths of up to 130 m or more. 3) From 5.5-4.5 Ma, voluminous bajaite lavas from cinder cones and dike vents flooded the top of the range and flowed down the radial drainages with flow distances up to 12 km. Vents are strongly aligned along steep NNW normal faults. 4) After 4.5 Ma, erosion removed interfluves of tuff breccia not armored by younger mafic lavas. Today, the long, steep-sided, lava-capped ridges are inverted topographically. At Santa Martha, an area in the central SSF with the highest concentration of domes, hydrothermal alteration of the volcanic deposits during and after the dome volcanism caused severe material weakening and slope failure within the volcanic center. The area is now a distinctive erosional basin, partly filled with clay-rich landslide deposits. Comparable volcanic history and topographic development are likely to have occurred in a dome field of similar age and size at Santa Agueda, 60 km SE of Santa Martha. 
    more » « less