skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Low-volume magmatism linked to flank deformation on Isla Santa Cruz, Galápagos Archipelago, using cosmogenic 3He exposure and 40Ar/39Ar dating of fault scarps and lavas
Abstract Isla Santa Cruz is a volcanic island located in the central Galápagos Archipelago. The island’s northern and southern flanks are deformed by E–W-trending normal faults not observed on the younger Galápagos shields, and Santa Cruz lacks the large summit calderas that characterize those structures. To construct a chronology of volcanism and deformation on Santa Cruz, we employ40Ar/39Ar geochronology of lavas and3He exposure dating of fault scarps from across the island. The combination of Ar–Ar dating with in situ-produced cosmogenic exposure age data provides a powerful tool to evaluate fault chronologies. The40Ar/39Ar ages indicate that the island has been volcanically active since at least 1.62 ± 0.030 Ma (2SD). Volcanism deposited lavas over the entire island until ~ 200 ka, when it became focused along an E–W-trending summit vent system; all dated lavas < 200 ka were emplaced on the southern flank. Structural observations suggest that the island has experienced two major faulting episodes. Crosscutting relationships of lavas indicate that north flank faults formed after 1.16 ± 0.070 Ma, but likely before 416 ± 36 ka, whereas the faults on the southern flank of the island initiated between 201 ± 37 and 32.6 ± 4.6 ka, based on3He exposure dating of fault surfaces. The data are consistent with a model wherein the northeastern faults are associated with regional extension owing to the young volcano’s location closer to the Galápagos Spreading Center at the time. The second phase of volcanism is contemporaneous with the formation of the southern faults. The expression of this younger, low-volume volcanic phase was likely related to the elongate island morphology established during earlier deformation. The complex feedback between tectonic and volcanic processes responsible for southward spreading along the southern flank likely generated persistent E-W-oriented magmatic intrusions. The formation of the Galápagos Transform Fault and sea-level fluctuations may be the primary causes of eruptive and deformational episodes on Santa Cruz.  more » « less
Award ID(s):
2048351
PAR ID:
10370633
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Bulletin of Volcanology
Volume:
84
Issue:
9
ISSN:
1432-0819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many intraplate oceanic islands undergo “rejuvenated” volcanism following the main edifice-building stage. Honolulu features Hawaiʻi’s most recent rejuvenated volcanism. K-Ar dating of Honolulu volcanism suggests that it started at ca. 750 ka and ended at <100 ka. Here, we present new 40Ar/39Ar ages and olivine diffusion modeling from Koko Rift lavas to resolve when the most recent Honolulu eruptions occurred and to evaluate possible mechanisms of rejuvenated volcanism and volcanic hazards. Diffusion modeling of olivine zoning profiles in Koko Rift basalts suggests that magmas were stored in the crust for many months prior to eruption. Six new 40Ar/39Ar ages cluster at 67 ± 2 ka (2σ), which demonstrates that Koko Rift is Hawaiʻi’s youngest known area of rejuvenated volcanism. The timing of Koko Rift eruptions coincides with the pronounced drop in global sea level (∼100 m) during Marine Isotope Stage 4. This major sea-level fall may have triggered the eruptions of Koko Rift magmas that were stored in the crust for months to years at < 15 km depth. The proposed mechanism is similar to that at other volcanic islands, which suggests that changes in global sea level may have significant control on the magnitude and frequency of eruptions at ocean island volcanoes. 
    more » « less
  2. Abstract In 2015 a geothermal exploration well was drilled on the island of Tutuila, American Samoa. The sample suite from the drill core provides 645 m of volcanic stratigraphy from a Samoan volcano, spanning 1.45 million years of volcanic history. In the Tutuila drill core, shield lavas with an EM2 (enriched mantle 2) signature are observed at depth, spanning 1.46 to 1.44 Ma. These are overlain by younger (1.35 to 1.17 Ma) shield lavas with a primordial “common” (focus zone) component interlayered with lavas that sample a depleted mantle component. Following ~1.15 Myr of volcanic quiescence, rejuvenated volcanism initiated at 24.3 ka and samples an EM1 (enriched mantle 1) component. The timing of the initiation of rejuvenated volcanism on Tutuila suggests that rejuvenated volcanism may be tectonically driven, as Samoan hotspot volcanoes approach the northern terminus of the Tonga Trench. This is consistent with a model where the timing of rejuvenated volcanism at Tutuila and at other Samoan volcanoes relates to their distance from the Tonga Trench. Notably, the Samoan rejuvenated lavas have EM1 isotopic compositions distinct from shield lavas that are geochemically similar to “petit spot” lavas erupted outboard of the Japan Trench and late stage lavas erupted at Christmas Island located outboard of the Sunda Trench. Therefore, like the Samoan rejuvenated lavas, petit spot volcanism in general appears to be related to tectonic uplift outboard of subduction zones, and existing geochemical data suggest that petit spots share similar EM1 isotopic signatures. 
    more » « less
  3. Volcanic rocks of the Sierra San Francisco (SSF), in northern Baja California Sur, Mexico, record post-subduction magmatism related to slab melting and slab window opening. The range is composed of andesitic and dacitic domes, mafic lavas, and volcaniclastic deposits (debris and block-and-ash-flow, lahar, and fluvial) that constitute the proximal to distal facies of a volcanic field with local eruptive ages that postdate the regional transition from subduction to transtension. Lowest observed volcanic units consist of interbedded and hydrothermally altered mafic lavas, tuff breccias, and andesite/dacite domes. These are overlain by volcaniclastic units and dacite domes that erupted between ~11-10 Ma. Volcaniclastic deposits comprise a section up to 800 m thick, locally flank and dip radially away from domes, and are likely associated with dome collapse. These deposits are unconformably overlain by a series of ~5.5-4.5 Ma Mg-enriched basaltic andesites (bajaites) that typically erupted along NNW-trending normal faults. Low interbedded mafic lavas are chemically similar to syn-subduction lavas (>15 Ma) SE of the SSF, suggesting a typical subduction supraslab mantle source during waning, late Miocene Farallon plate subduction. ~11-10 Ma dacite domes and debris flow blocks display an adakitic geochemical signature, implying an origin involving late Miocene foundering and melting of the edges of the subducted Farallon plate during the opening of a slab window after the 12.3 Ma transition from subduction to transtension. Adakitic rocks of the SSF and the Santa Clara volcanic field 60 km to the SW may constrain the E-W extent of the slab window. The ~5.5-4.5 Ma bajaites display enriched REE and trace element patterns, potentially resulting from the rise of enriched subslab mantle through the slab window and interaction with supraslab mantle, previously metasomatized by slab melts. Thermal pulses associated with Gulf of California rifting may have provided the heat to generate Mg-rich magmas which ascended along rift-related faults, precluding significant crustal contamination or fractionation, and allowing magmas to retain their primitive character. Further analysis will elucidate the timing of slab window development and the post-subduction mantle processes that drove the chemical evolution of SSF magmas. 
    more » « less
  4. The Sierra San Francisco (SSF) is a Neogene volcanic range along the topographic crest of the Baja California peninsula in northern Baja California Sur, Mexico. The SSF is ~55 km long (NW-SE) and ~30 km wide and its highest peaks exceed 1500 m elevation. The SSF has a long history of volcanism and has been eroded by deep, rugged, radially-draining canyons. The development of SSF topography is intimately associated with the volcanic evolution of the range. The SSF is a large and complex dacitic adakite dome complex largely built of a thick, up to 800 m, stratigraphic succession of dacitic tuff breccias with minor interbedded basaltic andesite lavas. These deposits overlie rare exposures of aeolian sandstone of unknown age. The tuff breccias represent block-and-ash-flows and lahars generated from steep-sided peleean dacite and andesite domes, with three radiometric dates of 11-10 Ma. This intermediate sequence is unconformably capped by widespread bajaite mafic lavas, 5.5-4.5 Ma. SSF topography evolved dramatically since the late Miocene: 1) From 11-10 Ma, adakite domes erupted across the central SSF, locally along NNW faults. Thick sequences of bedded tuff breccias accumulated around the domes and are radially inclined away from source domes. The duration of this volcanism is unknown. 2) From 10-5 Ma, deep erosion of the pyroclastic strata formed a range-wide radial drainage network, with channel depths of up to 130 m or more. 3) From 5.5-4.5 Ma, voluminous bajaite lavas from cinder cones and dike vents flooded the top of the range and flowed down the radial drainages with flow distances up to 12 km. Vents are strongly aligned along steep NNW normal faults. 4) After 4.5 Ma, erosion removed interfluves of tuff breccia not armored by younger mafic lavas. Today, the long, steep-sided, lava-capped ridges are inverted topographically. At Santa Martha, an area in the central SSF with the highest concentration of domes, hydrothermal alteration of the volcanic deposits during and after the dome volcanism caused severe material weakening and slope failure within the volcanic center. The area is now a distinctive erosional basin, partly filled with clay-rich landslide deposits. Comparable volcanic history and topographic development are likely to have occurred in a dome field of similar age and size at Santa Agueda, 60 km SE of Santa Martha. 
    more » « less
  5. Abstract Basaltic lavas from Harrat Uwayrid, Saudi Arabia, record the evolving magmatic and tectonic context of the Arabian Peninsula from at least the mid‐Miocene to the present day. New40Ar/39Ar ages spanning from the mid to late Miocene reveal that mid‐Miocene mafic volcanism formed a large, subalkaline volcanic plateau parallel to Red Sea rifts. Subsequent volumetrically subordinate late Miocene‐Quaternary alkaline volcanism erupted monogenetic cinder cones roughly orthogonal to the earlier volcanic field. The source region for all samples was affected by both fluid and silicate metasomatism; inferred mantle mineral assemblages include amphibole for mid‐Miocene lavas and phlogopite for late Miocene‐Quaternary samples. Calculated melting depths become shallower with time across the Miocene volcanic episode (∼20–15 Ma) but become deeper in the late Miocene to Quaternary (∼10–0 Ma), indicating melting pressures and temperatures significantly higher than those recorded in Miocene lavas despite progressive lithospheric thinning. We offer a two‐stage model for the formation of Harrat Uwayrid: (a) Early‐ and mid‐Miocene rifting associated with the Red Sea opening facilitated adiabatic melting of uppermost mantle lithosphere to form the early volcanic plateau and (b) Plate motion changes in the mid‐ and late‐Miocene initiated the Dead Sea Fault and destabilized a dense pyroxenitic lower lithosphere leading to foundering or lithospheric drip beneath Harrat Uwayrid that allowed deep lithospheric melting and formed the young volatile‐rich eruptives. 
    more » « less