A<sc>bstract</sc> Using data samples of 983.0 fb−1and 427.9 fb−1accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energye+e−colliders, singly Cabibbo-suppressed decays$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ are observed for the first time. The ratios of branching fractions of$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ relative to that of$$ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $$ are measured to be$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $$ Multiplying these values by the branching fraction of the normalization channel,$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $$ , the absolute branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $$ The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $$ .
more »
« less
Instanton contributions to the ABJM free energy from quantum M2 branes
A<sc>bstract</sc> We present a quantum M2 brane computation of the instanton prefactor in the leading non-perturbative contribution to the ABJM 3-sphere free energy at largeNand fixed levelk. Using supersymmetric localization, such instanton contribution was found earlier to take the form$$ {F}^{inst}\left(N,k\right)=-{\left({\sin}^2\frac{2\pi }{k}\right)}^{-1}\exp \left(-2\pi \sqrt{\frac{2N}{k}}\right)+.\dots $$ The exponent comes from the action of an M2 brane instanton wrapped onS3/ℤk, which represents the M-theory uplift of the ℂP1instanton in type IIA string theory on AdS4× ℂP3. The IIA string computation of the leading largekterm in the instanton prefactor was recently performed in arXiv:2304.12340. Here we find that the exact value of the prefactor$$ {\left({\sin}^2\frac{2\pi }{k}\right)}^{-1} $$ is reproduced by the 1-loop term in the M2 brane partition function expanded near theS3/ℤkinstanton configuration. As in the Wilson loop example in arXiv:2303.15207, the quantum M2 brane computation is well defined and produces a finite result in exact agreement with localization.
more »
« less
- Award ID(s):
- 2209997
- PAR ID:
- 10522237
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 10
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ is set at the 90 (95)% confidence level.more » « less
-
Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ where$$k \ge 2$$ . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ , where$$|x-y|$$ is the Euclidean distance betweenxandy, and$$c_k$$ is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ . From the other direction, for every$$k \ge 2$$ and$$n \ge 2$$ , there existnpoints in$$[0,1]^k$$ , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ . For the plane, the best constant is$$c_2=2$$ and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ for every$$k \ge 3$$ and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ , for every$$k \ge 2$$ . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ , which disproves the conjecture for$$k=3$$ . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.more » « less
-
A<sc>bstract</sc> We present a study of$$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ ,$$ {\Xi}_c^0\to {\Xi}^0\eta $$ , and$$ {\Xi}_c^0\to {\Xi}^0{\eta}^{\prime } $$ decays using the Belle and Belle II data samples, which have integrated luminosities of 980 fb−1and 426 fb−1, respectively. We measure the following relative branching fractions$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.48\pm 0.02\left(\textrm{stat}\right)\pm 0.03\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.11\pm 0.01\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.08\pm 0.02\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right)\end{array}} $$ for the first time, where the uncertainties are statistical (stat) and systematic (syst). By multiplying by the branching fraction of the normalization mode,$$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ , we obtain the following absolute branching fraction results$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=\left(6.9\pm 0.3\left(\textrm{stat}\right)\pm 0.5\left(\textrm{syst}\right)\pm 1.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)=\left(1.6\pm 0.2\left(\textrm{stat}\right)\pm 0.2\left(\textrm{syst}\right)\pm 0.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\varXi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)=\left(1.2\pm 0.3\left(\textrm{stat}\right)\pm 0.1\left(\textrm{syst}\right)\pm 0.2\left(\operatorname{norm}\right)\right)\times {10}^{-3},\end{array}} $$ where the third uncertainties are from$$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ . The asymmetry parameter for$$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ is measured to be$$ \alpha \left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=-0.90\pm 0.15\left(\textrm{stat}\right)\pm 0.23\left(\textrm{syst}\right) $$ .more » « less
-
A<sc>bstract</sc> In this paper we explorepp→W±(ℓ±ν)γto$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$ and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$ , as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of theW±→ ℓ±ν, making the calculation actually$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ . As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$ Bμν, which contribute to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ directly and not to$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$ . We show several distributions to illustrate the shape differences of the different contributions.more » « less
An official website of the United States government

