skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Responsibility and Care in AI / ML Education: A Collaborative Approach to Ethical Awareness
The rapid growth of artificial intelligence (AI) and machine learning (ML) has led to significant innovations but also raised ethical concerns. Researchers and students designed an ethical online game in this study to spread awareness about making informed decisions when using AI and ML. Conducted within a directed research group (DRG) curricular method, the study engages students as co‐researchers to develop a game, from developing ideas to playtesting the game in a class setting. The study employs a quantitative methodology to analyze a survey that 32 students, each with diverse backgrounds and knowledge in game development, conducted after each class session over three semesters. Findings indicate that self‐reported engagement changes depending on the activities done in each session, with students feeling capable of contributing to research and game design.  more » « less
Award ID(s):
2127924
PAR ID:
10552441
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Association for Information Science and Technology
Date Published:
Journal Name:
Proceedings of the Association for Information Science and Technology
Volume:
61
Issue:
1
ISSN:
2373-9231
Page Range / eLocation ID:
1168 to 1170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Innovative Practice Full Paper presents a novel, narrative, game-based approach to introducing first-year engineering students to concepts in ethical decision making. Approximately 250 first-year engineering students at the University of Connecticut played through our adventure, titled Mars: An Ethical Expedition, by voting weekly as a class on a presented dilemma. Literature shows that case studies still dominate learning sciences research on engineering ethical education, and that novel, active learning-based techniques, such as games, are infrequently used but can have a positive impact on both student engagement and learning. In this work, we suggest that games are a form of situated (context-based) learning, where the game setting provides learners with an authentic but safe space in which to explore engineering ethical choices and their consequences. As games normalize learning through failure, they present a unique opportunity for students to explore ethical decision making in a non-judgmental, playful, and safe way.We explored the situated nature of ethical decision making through a qualitative deconstruction of the weekly scenarios that students engaged with over the course of the twelve-week narrative. To assess their ethical reasoning, students took the Engineering Ethics Reasoning Instrument (EERI), a quantitative engineering ethics reasoning survey, at the beginning and end of the semester. The EERI scenarios were deconstructed to reveal their core ethical dilemmas, and then common elements between the EERI and our Mars adventure were compared to determine how students responded to similar ethical dilemmas presented in each context.We noted that students' responses to the ethical decisions in the Mars adventure scenarios were sometimes substantially different both from their response to the EERI scenario as well as from other decisions they made within the context of the game, despite the core ethical dilemma being the same. This suggests that they make ethical decisions in some situations that differ from a presumed abstract understanding of post-conventional moral reasoning. This has implications for how ethical reasoning can be taught and scaffolded in educational settings. 
    more » « less
  2. There are many initiatives that teach Artificial Intelligence (AI) literacy to K-12 students. Most downsize college-level instructional materials to grade-level appropriate formats, overlooking students' unique perspectives in the design of curricula. To investigate the use of educational games as a vehicle for uncovering youth's understanding of AI instruction, we co-designed games with 39 Black, Hispanic, and Asian high school girls and non-binary youth to create engaging learning materials for their peers. We conducted qualitative analyses on the designed game artifacts, student discourse, and their feedback on the efficacy of learning activities. This study highlights the benefits of co-design and learning games to uncover students' understanding and ability to apply AI concepts in game-based learning, their emergent perspectives of AI, and the prior knowledge that informs their game design choices. Our research uncovers students' AI misconceptions and informs the design of educational games and grade-level appropriate AI instruction. 
    more » « less
  3. We contend a better way to teach ethics to freshman engineering students would be to address engineering ethics not solely in the abstract of philosophy or moral development, but as situated in the everyday decisions of engineers. Since everyday decisions are not typically a part of university courses, our approach in large lecture classes is to simulate engineering decision-making situations using the role-playing mechanic and narrative structure of a fictional choose-your-own-adventure. Drawing on the contemporary learning theory of situated learning [1], [2], such playful learning may enable instructors to create assignments that induce students to break free of the typical student mindset of finding the “right” answer. Mars: An Ethical Expedition! is an interactive, 12 week, narrative game about the colonization of Mars by various engineering specialists. Students take on the role of a head engineer and are presented with situations that require high-stakes decision-making. Various game mechanics induce students to act as they would on-the-fly, within a real engineering project context, using personal reasoning and richly context-dependent justifications, rather than simply right/wrong answers. Each segment of the game is presented in audio and text that ends with a binary decision that determines what will happen next in the story. Historically, this game had been led by an instructor and played weekly, as a whole-class assignment, completed at the beginning of class. The class votes and the majority option is presented next. In addition to the central decision, there are also follow-up questions at the end of each week that provoke deeper analysis of the situation and reflection on the ethical principles involved. This prototype was initially developed within a learning management system, then supported by the TwineTM game engine, and studied in use in our 2021 NSF EETHICS grant. In 2022-23 the game was redesigned and extended using the GodotTM game engine. In addition to streamlining the gameplay loop and reducing the set-up and data management required by instructors, this redesign supported instructors with an option to allow the game to be student-paced and played by individual students or to keep the instructor-led 12 week whole-class playstyle. Our proposed driving research question is "In what ways does individual student play differ from whole class instructor-led play with regard to learning that ethical behavior is situated?" In the next phase of our ongoing investigation, we plan to further evaluate the use of playful assessment to estimate its validity and reliability in comparison to current best practices of engineering ethics assessment. 
    more » « less
  4. Ethics education has been recognized as increasingly important to engineering over the past two decades, although disagreement exists concerning how ethics can and should be taught in the classroom. With active learning strategies becoming a preferred method of instruction, a collaboration of authors from four universities (University of Pittsburgh, University of Connecticut, Rowan University and New Jersey Institute of Technology) are investigating how game-based or playful learning with strongly situated components can influence first-year engineering students’ ethical knowledge, awareness, and decision making. This paper offers an overview and results of the progress to date of this three year, NSF Improving Undergraduate STEM Education (IUSE) grant that aims to (1) characterize the ethical awareness and decision making of first-year engineering students, (2) develop game-based learning interventions focused on ethical decision making, and (3) determine how (and why) game-based approaches affect students’ ethical awareness in engineering and the advantages of such approaches over non game-based approaches. Now in its second year, the authors have conducted a preliminary analysis of first-year students' ethical knowledge and organization via a concept mapping approach and have measured students' ethical reasoning using the Defining Issues Test 2 (DIT2) and Engineering Ethics Reasoning Instrument (EERI). Further, the authors have developed a suite of ethics-driven games that have been implemented across three of the universities, engaging over 400 first-year engineering students. Evaluation data has also been gathered for further game development and to assess initial student engagement and learning. Year 1 has provided insight into where first-year engineering students “are at” in terms of ethical knowledge and reasoning when they come to college, and how game-based instruction can be effective in the development of these students into moral agents who understand the consequences of their decisions. Further results from this investigation will provide the engineering education community with a set of impactful and research-based playful learning pedagogy and assessment that will help students confront social and ethical dilemmas in their professional lives. 
    more » « less
  5. As engineers shape the future of technology and society, embedding human rights into engineering education is essential for fostering ethical practices, enhancing access to technological benefits, and addressing harm caused by engineered products or processes. This research will examine the attitudes of engineering students toward human rights and will explore the effectiveness of targeted educational interventions in fostering a deeper understanding of the intersection between engineering and human rights principles. Conducted with a senior design engineering class, the research will use pre- and post-intervention surveys to measure changes in students’ perceptions. The intervention consists of asynchronous online modules that integrate foundational human rights concepts with practical engineering applications, including sustainability, ethics, and social justice. The modules are organized around six key clusters, but this poster focuses on cybersecurity, privacy, and human vulnerability. Using a case study of Emancipatory AI, the poster highlights its potential to empower marginalized groups by breaking down barriers to technology access. This case study illustrates how human rights principles, including equity and accessibility, can guide the ethical development and application of AI to address systemic inequalities and promote social inclusion. We aim for this poster to encourage reflection on the role of human rights in engineering and the ways AI can be leveraged as a tool for the social good. This work reinforces the importance of integrating human rights considerations into engineering practice to create more inclusive and just technological solutions. 
    more » « less