skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sturgeon gut development: a unique yolk utilization strategy among vertebrates
In vertebrates, maternally supplied yolk is typically used in one of two ways: either intracellularly by endodermal cells or extracellularly via the yolk sac. This study delves into the distinctive gut development in sturgeons, which are among the most ancient extant fish groups, contrasting it with that of other vertebrates. Our observations indicate that while sturgeon endodermal cells form the archenteron (i.e., the primitive gut) dorsally, the floor of the archenteron is uniquely composed of extraembryonic yolk cells (YCs). As development progresses, during neurulation, the archenteric cavity inflates, expands laterally, and roofs a semicircle of YCs. By the pharyngula stage, the cavity fully encompasses the YC mass, which begins to be digested at the hatching stage. This suggests a notable deviation in sturgeon gut development from that in other vertebrates, as their digestive tract initiates its function by processing endogenous nutrition even before external feeding begins. Our findings highlight the evolutionary diversity of gut development strategies among vertebrates and provide new insights into the developmental biology of sturgeons.  more » « less
Award ID(s):
2029216
PAR ID:
10552575
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers Media
Date Published:
Journal Name:
Frontiers in Cell and Developmental Biology
Volume:
12
ISSN:
2296-634X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3–5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6–16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling. 
    more » « less
  2. Abstract The enteric nervous system (ENS) is the intrinsic nervous system of the gut and controls essential functions, such as gut motility, intestinal barrier function, and water balance. The ENS displays a complex 3D architecture within the context of the gut and specific transcriptional states needed to control gut homeostasis. During development, the ENS develops from enteric neural progenitor cells (ENPs) that migrate into the gut and differentiate into functionally diverse neuron types. Incorrect ENS development can disrupt ENS function and induce various gut disorders, including the congenital disease Hirschsprung disease, or various other functional gut neurological disorders, such as esophageal achalasia. In this study, we used the zebrafish larval model and performed whole gut spatial genomic analysis (SGA) of the differentiating ENS at cellular resolution. To that end, a pipeline was developed that integrated early and late developmental ENS stages by linking various spatial and transcriptional dimensions to discover regionalized cellular groups and their co-expression similarity. We identified 3D networks of intact ENS surrounding the gut and predicted cellular connectivity properties based on the stage. Spatial variable genes, such ashoxb5b,hoxa4a,etv1, andret, were regionalized along gut axes, suggesting they may have a precise spatiotemporal control of ENS development. The application of SGA to ENS development provides new insights into its cellular transcriptional networks and interactions, and provides a baseline data set to further advance our understanding of gut neurodevelopmental disorders such as Hirschsprung disease and congenital enteric neuropathies. 
    more » « less
  3. Monika Proszkowiec-Weglarz, Agricultural Research (Ed.)
    The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host’s own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians. 
    more » « less
  4. Jiggins, Francis Michael (Ed.)
    Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor domesticated endogenous viruses (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly forHyposoter didymatorthat harborsH. didymatorichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene,U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown ofU16by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicatedU16knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis. 
    more » « less
  5. Abstract Mosquitoes shift from detritus-feeding larvae to blood-feeding adults that can vector pathogens to humans and other vertebrates. The sugar and blood meals adults consume are rich in carbohydrates and protein but are deficient in other nutrients including B vitamins. Facultatively hematophagous insects like mosquitoes have been hypothesized to avoid B vitamin deficiencies by carryover of resources from the larval stage. However, prior experimental studies have also used adults with a gut microbiota that could provision B vitamins. Here, we usedAedes aegypti, which is the primary vector of dengue virus (DENV), to ask if carryover effects enable normal function in adults with no microbiota. We show that adults with no gut microbiota produce fewer eggs, live longer with lower metabolic rates, and exhibit reduced DENV vector competence but are rescued by provisioning B vitamins or recolonizing the gut with B vitamin autotrophs. We conclude carryover effects do not enable normal function. 
    more » « less