skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Information Dissemination via Broadcasts in the Presence of Adversarial Noise
We initiate the study of error correcting codes over the multi-party adversarial broadcast channel. Specifically, we consider the classic information dissemination problem where n parties, each holding an input bit, wish to know each other’s input. For this, they communicate in rounds, where, in each round, one designated party sends a bit to all other parties over a channel governed by an adversary that may corrupt a constant fraction of the received communication. We mention that the dissemination problem was studied in the stochastic noise model since the 80’s. While stochastic noise in multi-party channels has received quite a bit of attention, the case of adversarial noise has largely been avoided, as such channels cannot handle more than a 1/n-fraction of errors. Indeed, this many errors allow an adversary to completely corrupt the incoming or outgoing communication for one of the parties and fail the protocol. Curiously, we show that by eliminating these "trivial" attacks, one can get a simple protocol resilient to a constant fraction of errors. Thus, a model that rules out such attacks is both necessary and sufficient to get a resilient protocol. The main shortcoming of our dissemination protocol is its length: it requires Θ(n²) communication rounds whereas n rounds suffice in the absence of noise. Our main result is a matching lower bound of Ω(n²) on the length of any dissemination protocol in our model. Our proof first "gets rid" of the channel noise by converting it to a form of "input noise", showing that a noisy dissemination protocol implies a (noiseless) protocol for a version of the direct sum gap-majority problem. We conclude the proof with a tight lower bound for the latter problem, which may be of independent interest.  more » « less
Award ID(s):
2007462
PAR ID:
10552592
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Santhanam, Rahul
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
300
ISSN:
1868-8969
ISBN:
978-3-95977-331-7
Page Range / eLocation ID:
300-300
Subject(s) / Keyword(s):
Radio Networks Interactive Coding Error Correcting Codes Theory of computation → Communication complexity
Format(s):
Medium: X Size: 33 pages; 1013698 bytes Other: application/pdf
Size(s):
33 pages 1013698 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Oshman, Rotem (Ed.)
    Broadcast protocols enable a set of n parties to agree on the input of a designated sender, even in the face of malicious parties who collude to attack the protocol. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most communication-efficient constructions are based on the protocol of Dolev and Strong (SICOMP '83), and sub-quadratic broadcast has not been achieved even using randomization and cryptography. On the other hand, the only nontrivial ω(n) communication lower bounds are restricted to deterministic protocols, or against strong adaptive adversaries that can perform "after the fact" removal of messages. We provide communication lower bounds in this space, which hold against arbitrary cryptography and setup assumptions, as well as a simple protocol showing near tightness of our first bound. - Static adversary. We demonstrate a tradeoff between resiliency and communication for randomized protocols secure against n-o(n) static corruptions. For example, Ω(n⋅ polylog(n)) messages are needed when the number of honest parties is n/polylog(n); Ω(n√n) messages are needed for O(√n) honest parties; and Ω(n²) messages are needed for O(1) honest parties. Complementarily, we demonstrate broadcast with O(n⋅polylog(n)) total communication and balanced polylog(n) per-party cost, facing any constant fraction of static corruptions. - Weakly adaptive adversary. Our second bound considers n/2 + k corruptions and a weakly adaptive adversary that cannot remove messages "after the fact." We show that any broadcast protocol within this setting can be attacked to force an arbitrary party to send messages to k other parties. Our bound implies limitations on the feasibility of balanced low-communication protocols: For example, ruling out broadcast facing 51% corruptions, in which all non-sender parties have sublinear communication locality. 
    more » « less
  2. The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties to act in some specific manner before the adversary can corrupt them. Two such assumptions were made in the work of Chandran et al. [ITCS ’15]—parties can (a) multisend messages to several receivers simultaneously and (b) securely erase the message and the identities of the receivers before the adversary gets a chance to corrupt the sender (even if a receiver is corrupted). A natural question to ask is: Are these assumptions necessary for adaptively secure CL MPC? In this paper, we characterize the feasibility landscape for all-to-all reliable message transmission (RMT) under these two assumptions and use this characterization to obtain (asymptotically) tight feasibility results for CL MPC. – First, we prove a strong impossibility result for a broad class of RMT protocols, termed here store-and-forward protocols, which includes all known communication protocols for CL MPC from standard cryptographic assumptions. Concretely, we show that no such protocol with a certain expansion rate can tolerate a constant fraction of parties being corrupted. – Next, under the assumption of only a PKI, we show that assuming secure erasures, we can obtain an RMT protocol between all pairs of parties with polylogarithmic locality (even without assuming multisend) for the honest majority setting. We complement this result by showing a negative result for the setting of dishonest majority. – Finally, and somewhat surprisingly, under stronger assumptions (i.e., trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE), we construct a polylogarithmiclocality all-to-one RMT protocol, which is adaptively secure and tolerates any constant fraction of corruptions, without assuming either secure erasures or multisend. This last result uses a novel combination of adaptively secure (e.g., non-committing) encryption and (static) FHE to bypass the impossibility of compact adaptively secure FHE by Katz et al. [PKC’13], which we believe may be of independent interest. Intriguingly, even such assumptions do not allow reducing all-to-all RMT to all-to-one RMT (a reduction which is trivial in the non-CL setting). Still, we can implement what we call sublinear output-set RMT (SOS-RMT for short). We show how SOSRMT can be used for SOS-MPC under the known bounds for feasibility of MPC in the standard (i.e., non-CL) setting assuming, in addition to SOS-RMT, an anonymous PKI. 
    more » « less
  3. The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties to act in some specific manner before the adversary can corrupt them. Two such assumptions were made in the work of Chandran et al. [ITCS ’15]—parties can (a) multisend messages to several receivers simultaneously; and (b) securely erase the message and the identities of the receivers, before the adversary gets a chance to corrupt the sender (even if a receiver is corrupted). A natural question to ask is: Are these assumptions necessary for adaptively secure CL MPC? In this paper, we characterize the feasibility landscape for all-to-all reliable message transmission (RMT) under these two assumptions, and use this characterization to obtain (asymptotically) tight feasibility results for CL MPC. First, we prove a strong impossibility result for a broad class of RMT protocols, termed here store-and-forward protocols, which includes all known communication protocols for CL MPC from standard cryptographic assumptions. Concretely, we show that no such protocol with a certain expansion rate can tolerate a constant fraction of parties being corrupted. Next, under the assumption of only a PKI, we show that assuming secure erasures, we can obtain an RMT protocol between all pairs of parties with polylogarithmic locality (even without assuming multisend) for the honest majority setting. We complement this result by showing a negative result for the setting of dishonest majority. Finally, and somewhat surprisingly, under stronger assumptions (i.e., trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE), we construct a polylogarithmic-locality all-to-one RMT protocol, which is adaptively secure and tolerates any constant fraction of corruptions, without assuming either secure erasures or multisend. This last result uses a novel combination of adaptively secure (e.g., non-committing) encryption and (static) FHE to bypass the impossibility of compact adaptively secure FHE by Katz et al. [PKC’13], which we believe may be of independent interest. Intriguingly, even such assumptions do not allow reducing all-to-all RMT to all-to-one RMT (a reduction which is trivial in the non-CL setting). Still, we can implement what we call sublinear output-set RMT (SOS-RMT for short). We show how SOS-RMT can be used for SOS-MPC under the known bounds for feasibility of MPC in the standard (i.e., non-CL) setting assuming, in addition to SOS-RMT, an anonymous PKI. 
    more » « less
  4. We consider the problem of authenticating communication over a Myopic Binary Adversarial Channel (MBAC) while maintaining covertness with respect to the myopic adversary. When the main channel between legitimate parties is degraded with respect to the adversary's channel, we show the existence of an integrated scheme that simultaneously exploits secret keys to ensure covertness and authentication. The main technical challenge we address is showing that authentication may be ensured against myopic attacks when using the low-weight codewords mandated by covert communication. 
    more » « less
  5. Since the mid-1980s it has been known that Byzantine Agreement can be solved with probability 1 asynchronously, even against an omniscient, computationally unbounded adversary that can adaptivelycorruptup tof < n/3parties. Moreover, the problem is insoluble withf ≥ n/3corruptions. However, Bracha’s [13] 1984 protocol (see also Ben-Or [8]) achievedf < n/3resilience at the cost ofexponentialexpected latency2Θ (n), a bound that hasneverbeen improved in this model withf = ⌊ (n-1)/3 ⌋corruptions. In this article, we prove that Byzantine Agreement in the asynchronous, full information model can be solved with probability 1 against an adaptive adversary that can corruptf < n/3parties, while incurring onlypolynomial latency with high probability. Our protocol follows an earlier polynomial latency protocol of King and Saia [33,34], which hadsuboptimalresilience, namelyf ≈ n/109 [33,34]. Resiliencef = (n-1)/3is uniquely difficult, as this is the point at which the influence of the Byzantine and honest players are of roughly equal strength. The core technical problem we solve is to design a collective coin-flipping protocol thateventuallylets us flip a coin with an unambiguous outcome. In the beginning, the influence of the Byzantine players is too powerful to overcome, and they can essentially fix the coin’s behavior at will. We guarantee that after just a polynomial number of executions of the coin-flipping protocol, either (a) the Byzantine players fail to fix the behavior of the coin (thereby ending the game) or (b) we can “blacklist” players such that the blacklisting rate for Byzantine players is at least as large as the blacklisting rate for good players. The blacklisting criterion is based on a simple statistical test offraud detection. 
    more » « less