Abstract We use 3 mm continuum NOrthern Extended Millimeter Array and NH 3 Very Large Array observations toward the First Hydrostatic Core (FHSC) candidate CB 17 MMS in order to reveal the dust structure and gas properties to 600–1100 au scales and to constrain its evolutionary stage. We do not detect any compact source at the previously identified 1.3 mm point source, despite expecting a minimum signal-to-noise ratio of 9. The gas traced by NH 3 exhibits subsonic motions, with an average temperature of 10.4 K. A fit of the radial column density profile derived from the ammonia emission finds a flat inner region of radius ∼1800 au and a central density of ∼6 × 10 5 cm −3 . Virial and density structure analysis reveals the core is marginally bound ( α vir = 0.73). The region is entirely consistent with that of a young starless core, hence ruling out CB 17 MMS as an FHSC candidate. Additionally, the core exhibits a velocity gradient aligned with the major axis, showing an arc-like structure in the position–velocity diagram and an off-center region with high velocity dispersion, caused by two distinct velocity peaks. These features could be due to interactions with the nearby outflow, which appears to deflect due to the dense gas near the NH 3 column density peak. We investigate the specific angular momentum profile of the starless core, finding that it aligns closely with previous studies of similar radial profiles in Class 0 sources. This similarity to more evolved objects suggests that motions at 1000 au scales are determined by large-scale dense cloud motions, and may be preserved throughout the early stages of star formation.
more »
« less
Spectroscopic Survey of Faint Planetary-nebula Nuclei. V. The EGB 6-type Central Star of Abell 57
During our spectroscopic survey of central stars of faint planetary nebulae (PNe), we found that the nucleus of Abell 57 exhibits strong nebular emission lines. Using synthetic narrowband images, we show that the emission arises from an unresolved compact emission knot (CEK) coinciding with the hot (90,000 K) central star. Thus Abell 57 belongs to the rare class of “EGB 6-type” PNe, characterized by dense emission cores. Photometric data show that the nucleus exhibits a near-infrared excess, due to a dusty companion body with the luminosity of an M0 dwarf but a temperature of ∼1800 K. Emission-line analysis reveals that the CEK is remarkably dense (electron density ∼ 1.6 × 10^7 cm^{−3}), and has a radius of only ∼4.5 au. The CEK suffers considerably more reddening than the central star, which itself is more reddened than the surrounding PN. These puzzles may suggest an interaction between the knot and central star; however, Hubble Space Telescope imaging of EGB 6 itself shows that its CEK lies more than ∼125 au from the PN nucleus. We discuss a scenario in which a portion of the asymptotic giant branch wind that created the PN was captured into a dust cloud around a distant stellar companion; this cloud has survived to the present epoch, and has an atmosphere photoionized by radiation from the hot central star. However, in this picture EGB 6-type nuclei should be relatively common, yet they are actually extremely rare; thus they may arise from a different transitory phenomenon. We suggest future observations of Abell 57 that may help unravel its mysteries.
more »
« less
- Award ID(s):
- 2206090
- PAR ID:
- 10552676
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 970
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 164
- Subject(s) / Keyword(s):
- Planetary nebulae nuclei Planetary nebulae White dwarf stars Infrared sources Circumstellar dust Post-asymptotic giant branch stars
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the results of a comprehensive, near-UV-to-near-IR Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) imaging study of the young planetary nebula (PN) NGC 6302, the archetype of the class of extreme bilobed, pinched-waist PNe that are rich in dust and molecular gas. The new WFC3 emission-line image suite clearly defines the dusty toroidal equatorial structure that bisects NGC 6302's polar lobes, and the fine structures (clumps, knots, and filaments) within the lobes. The most striking aspect of the new WFC3 image suite is the bright, S-shaped 1.64 μ m [Fe ii ] emission that traces the southern interior of the east lobe rim and the northern interior of the west lobe rim, in point-symmetric fashion. We interpret this [Fe ii ] emitting region as a zone of shocks caused by ongoing, fast (∼100 km s −1 ), collimated, off-axis winds from NGC 6302's central star(s). The [Fe ii ] emission and a zone of dusty, N- and S-rich clumps near the nebular symmetry axis form wedge-shaped structures on opposite sides of the core, with boundaries marked by sharp azimuthal ionization gradients. Comparison of our new images with earlier HST/WFC3 imaging reveals that the object previously identified as NGC 6302's central star is a foreground field star. Shell-like inner lobe features may instead pinpoint the obscured central star’s actual position within the nebula’s dusty central torus. The juxtaposition of structures revealed in this HST/WFC3 imaging study of NGC 6302 presents a daunting challenge for models of the origin and evolution of bipolar PNe.more » « less
-
ABSTRACT NGC 6302 is a spectacular bipolar planetary nebula (PN) whose spectrum exhibits fast outflows and highly ionized emission lines, indicating the presence of a very hot central star ($${\sim}$$220 000 K). Its infrared spectrum reveals a mixed oxygen and carbon dust chemistry, displaying both silicate and polycyclic aromatic hydrocarbon (PAH) features. Using the James Webb Space Telescope Mid-Infrared Instrument and Medium Resolution Spectrometer, a mosaic map was obtained over the core of NGC 6302, covering the wavelength range of 5–28 $$\mu$$m and spanning an area of $${\sim}$$18.5 arcsec $$\times$$ 15arcsec. The spatially resolved spectrum reveals $${\sim}$$200 molecular and ionized lines from species requiring ionization potentials of up to 205 eV. The spatial distributions highlight a complex structure at the nebula’s centre. Highly ionized species such as [Mg vii] and [Si vii] show compact structures, while lower ionization species such as H$^+$ extend much farther outwards, forming filament-defined rims that delineate a bubble. Within the bubble, the H$^+$ and H$$_2$$ emission coincide, while the PAH emission appears farther out, indicating an ionization structure distinct from typical photodissociation regions, such as the Orion Bar. This may be the first identification of a PAH formation site in a PN. This PN appears to be shaped not by a steady, continuous outflow, but by a series of dynamic, impulsive bubble ejections, creating local conditions conducive to PAH formation. A dusty torus surrounds the core, primarily composed of large ($$\mu$$m-sized) silicate grains with crystalline components. The long-lived torus contains a substantial mass of material, which could support an equilibrium chemistry and a slow dust-formation process.more » « less
-
Abstract We present James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) integral-field spectroscopy of the nearby merging, luminous infrared galaxy, NGC 7469. This galaxy hosts a Seyfert type-1.5 nucleus, a highly ionized outflow, and a bright, circumnuclear star-forming ring, making it an ideal target to study active galactic nucleus (AGN) feedback in the local universe. We take advantage of the high spatial/spectral resolution of JWST/MIRI to isolate the star-forming regions surrounding the central active nucleus and study the properties of the dust and warm molecular gas on ∼100 pc scales. The starburst ring exhibits prominent polycyclic aromatic hydrocarbon (PAH) emission, with grain sizes and ionization states varying by only ∼30%, and a total star formation rate of 10–30 M ⊙ yr −1 derived from fine structure and recombination emission lines. Using pure rotational lines of H 2 we detect 1.2 × 10 7 M ⊙ of warm molecular gas at a temperature higher than 200 K in the ring. All PAH bands get significantly weaker toward the central source, where larger and possibly more ionized grains dominate the emission, likely the result of the ionizing radiation and/or the fast wind emerging from the AGN. The small grains and warm molecular gas in the bright regions of the ring however display properties consistent with normal star-forming regions. These observations highlight the power of JWST to probe the inner regions of dusty, rapidly evolving galaxies for signatures of feedback and inform models that seek to explain the coevolution of supermassive black holes and their hosts.more » « less
-
Abstract NGC 6302 (The Butterfly Nebula) is an extremely energetic and rapidly expanding bipolar planetary nebula (PN). If the central source is a single star, then its apparent location in an H-R diagram places it among the most massive, hottest, and presumably rapidly evolving of all central stars of PNe. Our proper motion study of NGC 6302, based on Hubble Space Telescope WFC3 images spanning 11 yr, has uncovered at least four different pairs of uniformly expanding internal lobes ejected at various times and orientations over the past two millennia at speeds ranging from 10–600 km s−1. In addition, we find a pair of collimated off-axis flows in constant motion at ∼770 ± 100 km s−1within which bright [Feii]feathersare conspicuous. Combining our results with those previously published, we find that the ensemble of flows has an ionized mass >0.1M⊙and its kinetic energy, between 1046and 1048erg, lies at the upper end of gravity-powered PNe ejection processes such as stellar mergers or mass accretion. We assemble our results into a plausible historical timeline of ejections from the nucleus and suggest that the ejections are powered by gravitational infall.more » « less
An official website of the United States government

